% look at manually labelled gh146 flies in odor space % load all data % only use 80% of data to a) determine principal components and b) fit a % linear prediction to behavior % use the remaining 20% of data, apply the predictors fit with training % data, and measure how well the predictors predict behavior clear all %close all rng('default') load ORN_PN_colors load analysis_dir_path manualLabelHome=fullfile(analysis_dir_path, 'PN_analysis/train'); publishedOdorPath=fullfile(analysis_dir_path, 'utilities/odorPanel_12_DoORData.mat'); load(publishedOdorPath); manualLabelledFolders=dir(manualLabelHome); manualLabelledFolders=manualLabelledFolders(3:end); labels=cell(1,length(manualLabelledFolders)); glomsannotated=zeros(1,length(manualLabelledFolders)); totalPutativeGloms=zeros(1,length(manualLabelledFolders)); nodors=13; odortimes=[6:9]; % hard-coded specific time interval for summarizing odor response odortimesfortimecourse=[1:18]; responsesTensorFullyOrthogonal=NaN*zeros(27,2,39,nodors,length(odortimesfortimecourse)); % flynum HARD CODED responsesGlomByOdor=[]; responsesTimeCourseGlomByOdor=[]; flyodors=[]; flygloms=[]; glombyodorflies=[]; behaviorOcc=[]; behaviorpreOcc=[]; leftRightSplitVal=1000; firstSecondPanelSplitVal=500; flyNum=0; glomfound=zeros(1,39); oldFlyNum=9000; oldDate=[]; oldLobe=[]; for i=1:length(manualLabelledFolders) currname=manualLabelledFolders(i).name; if ~strcmp(currname(1),'.') if strcmp(currname(end),'1') currVol='Volumes'; else currVol='Volumes2'; end if strcmp(currname(end-2),'r') currLobe='rightLobe'; cL=2; else currLobe='leftLobe'; cL=1; end if strcmp(currname(1),'H') currDate=currname(8:13); else currDate=currname(1:6); end underscores=strfind(currname,'_'); currFlyNum=currname((underscores(1)+4):(underscores(2)-1)); if ~strcmp(currDate,oldDate) || ~strcmp(currFlyNum,oldFlyNum) flyNum=flyNum+1; end currFiles=dir([manualLabelHome '/' manualLabelledFolders(i).name]); currFiles=currFiles(3:end); for j=1:length(currFiles) cfcname=currFiles(j).name; if ~strcmp(cfcname(1),'.') % load manual label file, response data, and behavior data load([manualLabelHome '/' manualLabelledFolders(i).name '/' currFiles(j).name]) end end %behaviorOcc=[behaviorOcc occ_zeroed]; %behaviorpreOcc=[behaviorpreOcc preocc_zeroed]; behaviorOcc=[behaviorOcc occ-preocc]; %behaviorOcc=[behaviorOcc occ]; behaviorpreOcc=[behaviorpreOcc preocc]; manualClusterLabels=clusterLabels; totalPutativeGloms(i)=length(manualClusterLabels); gs=median(grnResponse(:,:,odortimes),3); % use median gs=zeros(13,size(grnResponse,2)); for j=1:size(grnResponse,2) temp = squeeze(grnResponse(:,j,odortimes)-nanmedian(grnResponse(:,j,1:5),3)); gs(:,j)= transpose(max(temp')); end %gs=prctile(grnResponse(:,:,odortimes),75); % use percentile responseTemp=NaN*zeros(length(publishedOR.gh146glomerulusNames),nodors); responseTempTimeCourse=NaN*zeros(length(publishedOR.gh146glomerulusNames)*length(odortimesfortimecourse),size(grnResponse,1)); responsesTensorTemp=NaN*zeros(length(publishedOR.gh146glomerulusNames),size(grnResponse,1),length(odortimesfortimecourse)); labels{i}.manual=cell(1,length(manualClusterLabels)); % record manual labels for j=1:length(manualClusterLabels) labels{i}.manual{j}=manualClusterLabels{j}; end % fill in response matrix for j=1:length(manualClusterLabels) for k=1:length(publishedOR.gh146glomerulusNames) if strcmp(labels{i}.manual{j},publishedOR.gh146glomerulusNames{k}) responseTemp(k,:)=gs(:,j); glomsannotated(i)=glomsannotated(i)+1; glomfound(k)=glomfound(k)+1; for oo=1:nodors responseTempTimeCourse((((k-1)*length(odortimesfortimecourse)+1):k*length(odortimesfortimecourse)),oo)=grnResponse(oo,j,odortimesfortimecourse); responsesTensorTemp(k,oo,:)=grnResponse(oo,j,odortimesfortimecourse); end break end end end responseTempT=responseTemp'; responseTempTimeCourseT=responseTempTimeCourse'; responsesTensorFullyOrthogonal(flyNum,cL,:,:,:)=responsesTensorTemp; responsesGlomByOdor=[responsesGlomByOdor responseTempT(:)]; responsesTimeCourseGlomByOdor=[responsesTimeCourseGlomByOdor responseTempTimeCourseT(:)]; glombyodorflies=[glombyodorflies (flyNum+(cL-1)*leftRightSplitVal)]; oldFlyNum=currFlyNum; oldDate=currDate; oldLobe=currLobe; end end % % remove antenna lobes with fewer than X glomeruli annotated % glomthreshold=5; % toremove=find(glomsannotated<=glomthreshold); % responsesGlomByOdor(:,toremove)=[]; % responsesTimeCourseGlomByOdor(:,toremove)=[]; % glombyodorflies(toremove)=[]; % data points that correspond to each fly flyindices=cell(1,flyNum); flyindicesL=cell(1,flyNum); flyindicesR=cell(1,flyNum); for i=1:flyNum [temp temp2]=find(glombyodorflies==i); [tem3 temp4]=find(glombyodorflies==(i+leftRightSplitVal)); flyindices{i}=[temp2 temp4]; flyindicesL{i}=temp2; flyindicesR{i}=temp4; end % shuffle data points that correspond to each fly flyindicesShuffled=cell(1,flyNum); j=1; for i=randperm(flyNum) [temp temp2]=find(glombyodorflies==i); [tem3 temp4]=find(glombyodorflies==(i+leftRightSplitVal)); flyindicesShuffled{j}=[temp2 temp4]; j=j+1; end mycmap=distinguishable_colors(flyNum); % figure; % for i=1:length(glomsannotated) % plot([1 2],[glomsannotated(i) totalPutativeGloms(i)],'Marker','o','LineStyle','--','LineWidth',2) % hold on % end % set(gca,'XTick',[1:2]) % set(gca,'XTickLabel',[{'Annotated'},{'Available'}]) % axis([0.5 2.5 0 40]) % ylabel('Glomeruli') % box off % set(gca,'FontSize',15) %% bootstrap warning('off') iters=250; bootstrapsamples=flyNum; highestPCtouse=5; yesZscore=0; % zscore data matrix before performing PCA (0=no, 1=yes) fracIn=0.5; % best results when fracIn is high, ~0.5, only using high confidence glomeruli medianResponseOrTimeCourse=1; % 1 for median response only, 0 for full time course if medianResponseOrTimeCourse responsesNoResponseRemoved=responsesGlomByOdor; else responsesNoResponseRemoved=responsesTimeCourseGlomByOdor; end % blank odors (when solenoids failed for example) if medianResponseOrTimeCourse odorstoremove=[2 6 9 10 12]; blankThresh=[0.3 100 100 0.3 0.3]; % blank odor if 75% prctile response is below this (for odors that sporadically worked) % hard coded all flies before fly 23. 1:88 !!! Hard coded!! for i=1:length(odorstoremove) flyodorstoblank=find(prctile(responsesNoResponseRemoved(odorstoremove(i):nodors:end,:),75)<=blankThresh(i)); for j=1:(size(responsesNoResponseRemoved,1)/nodors) temp=find(isfinite(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),[1:88]))); tofill=intersect(flyodorstoblank,temp); if isfinite(nanmean(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),89:end))) responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),tofill)=nanmean(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),89:end)); end end end % remove MCH for flies on 181108 for j=1:(size(responsesNoResponseRemoved,1)/nodors) tofill=find(isfinite(responsesNoResponseRemoved(((j-1)*nodors+11),89:100)))+88; if isfinite(nanmean(responsesNoResponseRemoved(((j-1)*nodors+11),[1:89 101:end]))) responsesNoResponseRemoved(((j-1)*nodors+11),tofill)=nanmean(responsesNoResponseRemoved(((j-1)*nodors+11),[1:89 101:end])); end end else end gNames=publishedOR.gh146glomerulusNames; glomsFound=glomfound; numFinite=sum(isfinite(responsesNoResponseRemoved),2); toRemove=find(numFinite/size(responsesNoResponseRemoved,2)<=fracIn); responsesNoResponseRemoved(toRemove,:)=[]; if medianResponseOrTimeCourse temp=nodors; fp=toRemove(find(mod(toRemove,temp)==1)); glomsremoved=((fp-1)/temp)+1; gNames(glomsremoved)=[]; glomsFound(glomsremoved)=[]; else temp=length(odortimesfortimecourse)*nodors; fp=toRemove(find(mod(toRemove,temp)==1)); glomsremoved=((fp-1)/temp)+1; gNames(glomsremoved)=[]; end % remove D gNames(1)=[]; responsesNoResponseRemoved(1:13,:)=[]; % remove air and ethanol %responsesNoResponseRemoved(1:nodors:end,:)=0; %responsesNoResponseRemoved(8:nodors:end,:)=0; % % fill nans with mean for i=1:size(responsesNoResponseRemoved,1) for j=1:size(responsesNoResponseRemoved,2) if isnan(responsesNoResponseRemoved(i,j)) responsesNoResponseRemoved(i,j)=nanmean(responsesNoResponseRemoved(i,:)); end end end testR=zeros(highestPCtouse,iters); testRshuffled=zeros(highestPCtouse,iters); testR2=zeros(highestPCtouse,iters); testR2shuffled=zeros(highestPCtouse,iters); testNRSS=zeros(highestPCtouse,iters); % normalized residual sum of squares averagePredictor=cell(highestPCtouse,1); bestPredictorLoading=cell(iters,1); % loadings for the best predictor bestPredictor=zeros(iters,1); % PC which is the best predictor bestPredictorR=zeros(iters,1); pcPredictorRank=zeros(iters,highestPCtouse); vExplained=cell(1,highestPCtouse); relativeOctMchactivation=zeros(iters,highestPCtouse); rawRelativeOctactivation=zeros(iters,highestPCtouse,length(gNames)); rawRelativeMchactivation=zeros(iters,highestPCtouse,length(gNames)); rawPC=cell(1,highestPCtouse); bestPCOctMchactivation=zeros(1,iters); bestPCOctMchcorrelation=zeros(1,iters); octmchloadingcorr=zeros(iters,highestPCtouse); % correlation between oct and mch loading for each pc for jjj=1:iters % select bootstrap sample flies trainflies=zeros(1,bootstrapsamples); for i=1:bootstrapsamples trainflies(i)=1+round((flyNum-1)*rand(1)); end flyindicestrain=cell(1,length(trainflies)); datapts=cell(1,length(trainflies)); lastdatapt=0; for i=1:length(trainflies) [temp temp2]=find(glombyodorflies==trainflies(i)); [tem3 temp4]=find(glombyodorflies==(trainflies(i)+leftRightSplitVal)); flyindicestrain{i}=[temp2 temp4]; datapts{i}=[(lastdatapt+1):(lastdatapt+length(flyindicestrain{i}))]; lastdatapt=(lastdatapt+length(flyindicestrain{i})); end traindata=[]; for i=1:length(trainflies) for j=1:length(flyindicestrain{i}) traindata=[traindata responsesNoResponseRemoved(:,flyindicestrain{i}(j))]; end end [COEFF, SCORE, LATENT, TSQUARED, EXPLAINED] = pca(traindata'); vExplained{jjj}=EXPLAINED; co = SCORE; rawActivation{jjj}=zeros(size(COEFF,1),highestPCtouse); for pcstouse=1:highestPCtouse currpc=COEFF(:,pcstouse); if jjj==1 rawPC{pcstouse}=zeros(size(COEFF,1),iters); end rawPC{pcstouse}(:,jjj)=currpc; % generate linear model based on current PC behaviorprediction=(traindata'*currpc); flyTruePref=zeros(1,length(trainflies)); flyTruePrefShuffled=zeros(1,length(trainflies)); ally=behaviorOcc; nactivity=zeros(length(trainflies),length(pcstouse)); shuffledindtrain=randperm(length(trainflies)); % for comparing to shuffled null model for i=1:length(trainflies) flyTruePref(i)=mean(ally(flyindicestrain{i})); flyTruePrefShuffled(i)=mean(ally(flyindicestrain{shuffledindtrain(i)})); nactivity(i,:)=mean(behaviorprediction(datapts{i},:)); end linmodel=fitlm(nactivity,flyTruePref); linmodelShuffled=fitlm(nactivity,flyTruePrefShuffled); beta=linmodel.Coefficients.Estimate; PCContribution=currpc*beta(2:end); mycorr=corrcoef(nactivity,flyTruePref); mycorrShuffled=corrcoef(nactivity,flyTruePrefShuffled); myr2=linmodel.Rsquared.Ordinary; myr2shuffled=linmodelShuffled.Rsquared.Ordinary; if jjj==1 %averagePredictor{pcstouse}=PCContribution'; averagePredictor{pcstouse}=currpc'; else %averagePredictor{pcstouse}=averagePredictor{pcstouse}+PCContribution'; averagePredictor{pcstouse}=averagePredictor{pcstouse}+currpc'; end testR(pcstouse,jjj)=mycorr(1,2); testRshuffled(pcstouse,jjj)=mycorrShuffled(1,2); testR2(pcstouse,jjj)=myr2; testR2shuffled(pcstouse,jjj)=myr2shuffled; end % find best predictor [val ind]=max(testR(:,jjj)); bestPredictor(jjj)=ind; bestPredictorLoading{jjj}=COEFF(:,ind); bestPredictorR(jjj)=val; [vals inds]=sort(testR(:,jjj),'descend'); pcPredictorRank(jjj,:)=inds; bestpc=COEFF(:,ind); bestPCOctMchactivation(jjj)=mean((bestpc(2:13:end)-bestpc(11:13:end))./(1+(abs(bestpc(2:13:end))+abs(bestpc(11:13:end))))); bestPCOctMchcorrelation(jjj)=octmchloadingcorr(jjj,ind); if mod(jjj,10)==0 disp(['iteration ' num2str(jjj)]) end % if mod(jjj,20)==0 % boxplot(testR(:,1:jjj)') % xlabel('PC #') % ylabel('Test Data r value') % box off % set(gca,'FontSize',15) % drawnow % end %catch %end end for i=1:highestPCtouse averagePredictor{i}=averagePredictor{i}/iters; end % % figure % subplot(2,1,1) % distributionPlot(testR','histOpt',1,'colormap',1-gray(64),'showMM',0) % xlabel('PC used for linear model') % ylabel('Unshuffled R') % box off % set(gca,'FontSize',15) % subplot(2,1,2) % distributionPlot(testRshuffled','histOpt',1,'colormap',1-gray(64),'showMM',0) % xlabel('PC used for linear model') % ylabel('Shuffled R') % box off % set(gca,'FontSize',15) % % figure % subplot(1,2,1) % distributionPlot(testR2','histOpt',1,'colormap',1-gray(64),'showMM',0) % xlabel('PC used for linear model') % ylabel('Unshuffled R^2') % axis([0 highestPCtouse+1 0 0.8]) % box off % set(gca,'FontSize',15) % subplot(1,2,2) % distributionPlot(testR2shuffled','histOpt',1,'colormap',1-gray(64),'showMM',0) % xlabel('PC used for linear model') % ylabel('Shuffled R^2') % axis([0 highestPCtouse+1 0 0.8]) % box off % set(gca,'FontSize',15) % figure 1 violinPlot(testR2',pcolor) xlabel('PC used for linear model') ylabel('Unshuffled R^2') axis([0 highestPCtouse+1 0 1]) box off set(gca,'FontSize',15) % figure 2 violinPlot(testR2shuffled',pcolor) xlabel('PC used for linear model') ylabel('Shuffled R^2') axis([0 highestPCtouse+1 0 1]) box off set(gca,'FontSize',15) testR2t=testR2'; testR2shuffledt=testR2shuffled'; labs=[ones(1,iters) 2*ones(1,iters) 3*ones(1,iters) 4*ones(1,iters) 5*ones(1,iters)]; % FIG 1o PN OCT-MCH preference prediction figure %3 boxplot(testR2t(:),labs,'plotstyle','compact','BoxStyle','filled','Colors',pcolor,'medianstyle','target','symbol','','outliersize',1) xlabel('PC used for linear model') ylabel('Unshuffled R^2') set(gca,'xtick','') set(gca,'ytick','') axis([0 highestPCtouse+1 0 0.75]) set(gca,'FontSize',15) figure %4 boxplot(testR2shuffledt(:),labs,'plotstyle','compact','BoxStyle','filled','Colors',pcolor,'medianstyle','target','symbol','','outliersize',1) xlabel('PC used for linear model') ylabel('Shuffled R^2') axis([0 highestPCtouse+1 0 0.75]) set(gca,'FontSize',15) set(gca,'xtick','') set(gca,'ytick','') %% run train/test many times and save replicate data warning('off') iters=50; highestPCtouse=5; yesZscore=0; % zscore data matrix before performing PCA (0=no, 1=yes) fracIn=0.5; % best results when fracIn is high, ~0.5, only using high confidence glomeruli medianResponseOrTimeCourse=1; % 1 for median response only, 0 for full time course if medianResponseOrTimeCourse responsesNoResponseRemoved=responsesGlomByOdor; else responsesNoResponseRemoved=responsesTimeCourseGlomByOdor; end % blank odors (when solenoids failed for example) if medianResponseOrTimeCourse odorstoremove=[2 6 9 10 12]; blankThresh=[0.3 100 100 0.3 0.3]; % blank odor if 75% prctile response is below this (for odors that sporadically worked) % hard coded all flies before fly 23. 1:88 !!! Hard coded!! for i=1:length(odorstoremove) flyodorstoblank=find(prctile(responsesNoResponseRemoved(odorstoremove(i):nodors:end,:),75)<=blankThresh(i)); for j=1:(size(responsesNoResponseRemoved,1)/nodors) temp=find(isfinite(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),[1:88]))); tofill=intersect(flyodorstoblank,temp); if isfinite(nanmean(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),89:end))) responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),tofill)=nanmean(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),89:end)); end end end % remove MCH for flies on 181108 for j=1:(size(responsesNoResponseRemoved,1)/nodors) tofill=find(isfinite(responsesNoResponseRemoved(((j-1)*nodors+11),89:100)))+88; if isfinite(nanmean(responsesNoResponseRemoved(((j-1)*nodors+11),[1:89 101:end]))) responsesNoResponseRemoved(((j-1)*nodors+11),tofill)=nanmean(responsesNoResponseRemoved(((j-1)*nodors+11),[1:89 101:end])); end end else end gNames=publishedOR.gh146glomerulusNames; glomsFound=glomfound; numFinite=sum(isfinite(responsesNoResponseRemoved),2); toRemove=find(numFinite/size(responsesNoResponseRemoved,2)<=fracIn); responsesNoResponseRemoved(toRemove,:)=[]; if medianResponseOrTimeCourse temp=nodors; fp=toRemove(find(mod(toRemove,temp)==1)); glomsremoved=((fp-1)/temp)+1; gNames(glomsremoved)=[]; glomsFound(glomsremoved)=[]; else temp=length(odortimesfortimecourse)*nodors; fp=toRemove(find(mod(toRemove,temp)==1)); glomsremoved=((fp-1)/temp)+1; gNames(glomsremoved)=[]; end testR=zeros(highestPCtouse,iters); testNRSS=zeros(highestPCtouse,iters); % normalized residual sum of squares averagePredictor=cell(highestPCtouse,1); bestPredictorLoading=cell(iters,1); % loadings for the best predictor bestPredictor=zeros(iters,1); % PC which is the best predictor bestPredictorR=zeros(iters,1); pcPredictorRank=zeros(iters,highestPCtouse); vExplained=cell(1,highestPCtouse); relativeOctMchactivation=zeros(iters,highestPCtouse); rawRelativeOctactivation=zeros(iters,highestPCtouse,length(gNames)); rawRelativeMchactivation=zeros(iters,highestPCtouse,length(gNames)); rawPC=cell(1,highestPCtouse); bestPCOctMchactivation=zeros(1,iters); bestPCOctMchcorrelation=zeros(1,iters); octmchloadingcorr=zeros(iters,highestPCtouse); % correlation between oct and mch loading for each pc for jjj=1:iters % Split data into randomly assigned train/test sets testsize=40; trainsize=100-testsize; randomizedOrder=randperm(flyNum); holdoutflies=randomizedOrder(1:round((length(randomizedOrder)*testsize/100))); trainflies=setxor(1:flyNum,holdoutflies); traintoremove=[]; for i=1:length(holdoutflies) temp=find(glombyodorflies==(holdoutflies(i))); temp2=find(glombyodorflies==(holdoutflies(i)+leftRightSplitVal)); traintoremove=[traintoremove temp temp2]; end testtoremove=setxor(1:length(glombyodorflies),traintoremove); flyindicestrain=cell(1,length(trainflies)); glombyodorfliestrain=glombyodorflies; glombyodorfliestrain(traintoremove)=[]; for i=1:length(trainflies) [temp temp2]=find(glombyodorfliestrain==trainflies(i)); [tem3 temp4]=find(glombyodorfliestrain==(trainflies(i)+leftRightSplitVal)); flyindicestrain{i}=[temp2 temp4]; end flyindicestest=cell(1,length(holdoutflies)); glombyodorfliestest=glombyodorflies; glombyodorfliestest(testtoremove)=[]; for i=1:length(holdoutflies) [temp temp2]=find(glombyodorfliestest==holdoutflies(i)); [tem3 temp4]=find(glombyodorfliestest==(holdoutflies(i)+leftRightSplitVal)); flyindicestest{i}=[temp2 temp4]; end % % fill nans with mean for i=1:size(responsesNoResponseRemoved,1) for j=1:size(responsesNoResponseRemoved,2) if isnan(responsesNoResponseRemoved(i,j)) responsesNoResponseRemoved(i,j)=nanmean(responsesNoResponseRemoved(i,:)); end end end testdata=responsesNoResponseRemoved; testdata(:,testtoremove)=[]; traindata=responsesNoResponseRemoved; traindata(:,traintoremove)=[]; if yesZscore % z-score train and test data ztrain=traindata'; ztrain=(ztrain-mean(ztrain))./(std(ztrain)); ztrain=ztrain'; ztest=testdata'; ztest=(ztest-mean(ztest))./(std(ztest)); ztest=ztest'; traindata=ztrain; testdata=ztest; end [COEFF, SCORE, LATENT, TSQUARED, EXPLAINED] = pca(traindata'); vExplained{jjj}=EXPLAINED; co = SCORE; rawActivation{jjj}=zeros(size(COEFF,1),highestPCtouse); for pcstouse=1:highestPCtouse currpc=COEFF(:,pcstouse); if jjj==1 rawPC{pcstouse}=zeros(size(COEFF,1),iters); end rawPC{pcstouse}(:,jjj)=currpc; % generate linear model based on current PC behaviorprediction=(traindata'*currpc); flyTruePref=zeros(1,length(trainflies)); flyTruePrefShuffled=zeros(1,length(trainflies)); ally=behaviorOcc'; ally(traintoremove)=[]; nactivity=zeros(length(trainflies),length(pcstouse)); shuffledindtrain=randperm(length(trainflies)); % for comparing to shuffled null model for i=1:length(trainflies) flyTruePref(i)=mean(ally(flyindicestrain{i})); flyTruePrefShuffled(i)=mean(ally(flyindicestrain{shuffledindtrain(i)})); nactivity(i,:)=mean(behaviorprediction(flyindicestrain{i},:)); end linmodel=fitlm(nactivity,flyTruePref); beta=linmodel.Coefficients.Estimate; PCContribution=currpc*beta(2:end); % apply predictor to testdata and evaluate how held out points fit in % model %behaviorprediction=testdata'*PCContribution; behaviorprediction=testdata'*currpc; testflyTruePref=zeros(1,length(holdoutflies)); testflyTruePrefShuffled=zeros(1,length(holdoutflies)); flyPredictedPref=zeros(1,length(holdoutflies)); ally=behaviorOcc'; ally(testtoremove)=[]; testnactivity=zeros(length(holdoutflies),1); shuffledindtest=randperm(length(holdoutflies)); % for comparing to shuffled null model for i=1:length(holdoutflies) testflyTruePref(i)=mean(ally(flyindicestest{i})); testflyTruePrefShuffled(i)=mean(ally(flyindicestest{shuffledindtest(i)})); testnactivity(i,:)=mean(behaviorprediction(flyindicestest{i},:)); end mytestprediction=predict(linmodel,testnactivity); myr=corrcoef(mytestprediction,testflyTruePref); myrshuffled=corrcoef(mytestprediction,testflyTruePref(randperm(length(testflyTruePref)))); if jjj==1 %averagePredictor{pcstouse}=PCContribution'; averagePredictor{pcstouse}=currpc'; else %averagePredictor{pcstouse}=averagePredictor{pcstouse}+PCContribution'; averagePredictor{pcstouse}=averagePredictor{pcstouse}+currpc'; end testR(pcstouse,jjj)=myr(1,2); testRshuffled(pcstouse,jjj)=myrshuffled(1,2); testNRSS(pcstouse,jjj)=nanmean((((testflyTruePref-mytestprediction')).^2)); relativeOctMchactivation(jjj,pcstouse)=mean((currpc(2:13:end)-currpc(11:13:end))./(1+(abs(currpc(2:13:end))+abs(currpc(11:13:end))))); rawRelativeOctactivation(jjj,pcstouse,:)=currpc(2:13:end); rawRelativeMchactivation(jjj,pcstouse,:)=currpc(11:13:end); [octmchcorr asd]=corr(currpc(2:13:end),currpc(11:13:end)); octmchloadingcorr(jjj,pcstouse)=octmchcorr; end % find best predictor [val ind]=max(testR(:,jjj)); bestPredictor(jjj)=ind; bestPredictorLoading{jjj}=COEFF(:,ind); bestPredictorR(jjj)=val; [vals inds]=sort(testR(:,jjj),'descend'); pcPredictorRank(jjj,:)=inds; bestpc=COEFF(:,ind); bestPCOctMchactivation(jjj)=mean((bestpc(2:13:end)-bestpc(11:13:end))./(1+(abs(bestpc(2:13:end))+abs(bestpc(11:13:end))))); bestPCOctMchcorrelation(jjj)=octmchloadingcorr(jjj,ind); if mod(jjj,1)==0 disp(['iteration ' num2str(jjj)]) end % if mod(jjj,20)==0 % boxplot(testR(:,1:jjj)') % xlabel('PC #') % ylabel('Test Data r value') % box off % set(gca,'FontSize',15) % drawnow % end %catch %end end for i=1:highestPCtouse averagePredictor{i}=averagePredictor{i}/iters; end myr2=(testR.^2').*sign(testR'); myr2shuffled=(testRshuffled.^2').*sign(testRshuffled'); figure subplot(1,2,1) distributionPlot(myr2,'histOpt',1,'colormap',1-gray(64),'showMM',0) xlabel('PC used for linear model') ylabel('Unshuffled R^2') axis([0 highestPCtouse+1 -0.8 0.8]) box off set(gca,'FontSize',15) subplot(1,2,2) distributionPlot(myr2shuffled,'histOpt',1,'colormap',1-gray(64),'showMM',0) xlabel('PC used for linear model') ylabel('Shuffled R^2') axis([0 highestPCtouse+1 -0.8 0.8]) box off set(gca,'FontSize',15) %% %rawOctMchdifference=(rawRelativeOctactivation-rawRelativeMchactivation)./(1+abs(rawRelativeOctactivation)+abs(rawRelativeMchactivation)); rawOctMchdifference=(rawRelativeOctactivation-rawRelativeMchactivation); totalOctMchdifference=zeros(highestPCtouse,iters*length(gNames)); for j=1:highestPCtouse totalOctMchdifference(j,:)=reshape(rawOctMchdifference(:,j,:),iters*length(gNames),1); % plot histogram of oct-mch loadings % nbins=linspace(-0.55,0.55,50); % [ay ax]=hist(totalOctMchdifference(j,:),nbins); % plot(ax,log10(ay),'k','LineWidth',2) % axis([-0.5 0.5 0 4]) % pause end meanAbsoluteOctMchdifference=zeros(iters,highestPCtouse); for j=1:iters meanAbsoluteOctMchdifference(j,:)=mean(rawOctMchdifference(j,:,:),3); end figure distributionPlot(meanAbsoluteOctMchdifference(:,:),'histOpt',1,'colormap',1-gray(64),'showMM',0); xlabel('PC #') ylabel('Average OCT-MCH Loading') set(gca,'FontSize',15) figure; boxplot(octmchloadingcorr) box off xlabel('PC #') ylabel('Correlation (OCT vs. MCH loading)') set(gca,'FontSize',15) figure %subplot(2,1,1) boxplot(testR') xlabel('PC used for linear model') ylabel('Correlation (true vs. predicted preference)') box off set(gca,'FontSize',15) % subplot(2,1,2) % boxplot(testNRSS') % xlabel('PC used for linear model') % ylabel('Normalized residual sum of squares') % box off % set(gca,'FontSize',15) figure plot(averagePredictor{4},'*','LineWidth',2,'MarkerSize',8) hold on plot(zeros(1,size(COEFF,1)),'k--','LineWidth',3) j=1; for i=1:nodors:length(averagePredictor{4}) plot((i-0.5)*ones(1,100), linspace(min(averagePredictor{4}),max(averagePredictor{4})),'k--','LineWidth',2) %text(i+floor(nodors/3),min(averagePredictor{4}),num2str(glomsFound(j)),'FontSize',15) j=j+1; end set(gca,'xtick',(1:nodors:length(averagePredictor{4}))+floor(nodors/2),'xticklabel',string(gNames),'FontSize',10) xtickangle(30) ylabel('PC 4 loadings') box off set(gca,'FontSize',15) figure subplot(2,2,1) boxplot(testR') xlabel('PC used for linear model') ylabel('Correlation between predicted vs. true preference (test data)') box off set(gca,'FontSize',15) subplot(2,2,2) hist(bestPredictor) xlabel('Best predictor PC #') % boxplot(pcPredictorRank) % xlabel('PC #') % ylabel('PC Predictor Rank') subplot(2,2,3) hist(bestPredictorR) xlabel('Best predictor''s r-value') bploadings=zeros(1,size(COEFF,1)); allbpl=zeros(iters,size(COEFF,1)); for j=1:iters bploadings=bploadings+bestPredictorLoading{j}'; allbpl(j,:)=bestPredictorLoading{j}'; end bploadings=bploadings/iters; subplot(2,2,4) plot(bploadings,'*','LineWidth',3,'MarkerSize',10) hold on plot(zeros(1,size(COEFF,1)),'k--','LineWidth',3) j=1; for i=1:nodors:length(averagePredictor{4}) plot((i-0.5)*ones(1,100), linspace(min(bploadings),max(bploadings)),'k--','LineWidth',2) text(i+floor(nodors/3),min(bploadings),num2str(glomsFound(j)),'FontSize',15) j=j+1; end set(gca,'xtick',(1:nodors:length(bploadings))+floor(nodors/2),'xticklabel',string(gNames),'FontSize',10) xtickangle(30) ylabel('Best predictor''s loadings') box off set(gca,'FontSize',15) % figure % boxplot(relativeOctMchactivation) % xlabel('PC #') % ylabel('Abs(Oct-MCH) Loading') % set(gca,'FontSize',15) % % figure % hist(relativeOctMchactivation(:,4),50) % xlabel('PC #') % ylabel('Abs(Oct-MCH) Loading') % set(gca,'FontSize',15) % % figure % distributionPlot(relativeOctMchactivation,'histOpt',1,'colormap',1-gray(64)); % xlabel('PC #') % ylabel('Average OCT-MCH Loading') % set(gca,'FontSize',15) % show best predictor loadings for each iteration bpls=zeros(length(bestPredictorLoading{1}),iters); oa=zeros(1,iters); for j=1:iters bpls(:,j)=bestPredictorLoading{j}'; oa(j)=corr(bestPredictorLoading{j}(2:13:end),bestPredictorLoading{j}(11:13:end)); end figure; imagesc(bpls) xlabel('iteration') ylabel('dimension') figure; hist(oa) ex=zeros(1,50); for j=1:iters ex=ex+vExplained{j}(1:50)'; end ex=ex/iters; figure plot(log10(ex),'LineWidth',3) xlabel('PC #') ylabel('log10(Variance Explained)') set(gca,'FontSize',20) % run kmeans on allbpl (how many "best pcs" are there) [IDX, bestpredictorC, SUMD]= kmeans(allbpl, 20); figure; imagesc(bestpredictorC) xlabel('Dimensions') ylabel('Predictor Class (from kmeans)') title('Best PC predictor loadings (all)') set(gca,'FontSize',15) % make a "best predictor matrix" bestpredictors=bestpredictorC(1,:); for i=2:size(bestpredictorC,1) for j=1:size(bestpredictors,1) temp=corrcoef(bestpredictorC(i,:),bestpredictors(j,:)); temp2=temp(1,2); if abs(temp2)>0.4 if temp2>0 bestpredictors(j,:)=(bestpredictors(j,:)+bestpredictorC(i,:))/2; else bestpredictors(j,:)=(bestpredictors(j,:)-bestpredictorC(i,:))/2; end break elseif j==size(bestpredictors,1) bestpredictors=[bestpredictors; bestpredictorC(i,:)]; end end end figure; imagesc(bestpredictors) xlabel('Dimensions') ylabel('Predictor Class (from kmeans)') title('Best PC predictor loadings (clustered)') set(gca,'FontSize',15) % run kmeans on each rawPC sweep to find possibilities maxK=20; for i=1:highestPCtouse [IDX, C, SUMD]= kmeans(rawPC{i}', maxK); kidx{i}=IDX; kc{i}=C; end figure for i=1:highestPCtouse subplot(2,5,i) boxplot(testR(i,:),kidx{i}) ylabel('Measured-Predicted Fit Correlation') title(['PC ' num2str(i)]) end figure for i=1:highestPCtouse subplot(2,5,i) boxplot(octmchloadingcorr(:,i),kidx{i}) ylabel('OCT-MCH correlation') title(['PC ' num2str(i)]) end % go through all PCs and select each one which led to a behavior prediction predcorr=0.2; % select PCs with behavior prediction correlation higher than this number bestOfPc=[]; for i=1:highestPCtouse for j=1:maxK if median(testR(i,kidx{i}==j))>predcorr if bestOfPc bestOfPc=kc{i}(j,:); else bestOfPc=[bestOfPc; kc{i}(j,:)]; end disp(['saving PC# ' num2str(i) ' cluster ' num2str(j)]) end end end % make a "best of predictor matrix" bestpredictorsAll=bestOfPc(1,:); for i=2:size(bestOfPc,1) for j=1:size(bestpredictorsAll,1) temp=corrcoef(bestOfPc(i,:),bestpredictorsAll(j,:)); temp2=temp(1,2); if abs(temp2)>0.6 if temp2>0 bestpredictorsAll(j,:)=(bestpredictorsAll(j,:)+bestOfPc(i,:))/2; else bestpredictorsAll(j,:)=(bestpredictorsAll(j,:)-bestOfPc(i,:))/2; end break elseif j==size(bestpredictorsAll,1) bestpredictorsAll=[bestpredictorsAll; bestOfPc(i,:)]; end end end figure; imagesc(bestpredictorsAll) xlabel('Dimensions') ylabel('Predictor Class (from kmeans)') title('Best PC predictor loadings (clustered)') set(gca,'FontSize',15)