%% use unsupervised algorithm to sort glomeruli across individual trials clear all close all manualLabelHome='/Users/mattchurgin/Dropbox/flyimaging/analysis/PN_analysis/manuallyLabelled_allThrough181210'; publishedOdorPath='/Users/mattchurgin/Desktop/dblab/mattFunctions/odorpanelResponsesDoOR/odorPanel_12/odorPanel_12_DoORData.mat'; load(publishedOdorPath); manualLabelledFolders=dir(manualLabelHome); manualLabelledFolders=manualLabelledFolders(3:end); labels=cell(1,length(manualLabelledFolders)); glomsannotated=zeros(1,length(manualLabelledFolders)); totalPutativeGloms=zeros(1,length(manualLabelledFolders)); nodors=13; odortimes=[6:9]; % hard-coded specific time interval for summarizing odor response odortimesfortimecourse=[1:18]; responsesTensorFullyOrthogonal=NaN*zeros(27,2,39,nodors,length(odortimesfortimecourse)); % flynum HARD CODED responsesGlomByOdor=[]; responsesTimeCourseGlomByOdor=[]; flyodors=[]; flygloms=[]; glombyodorflies=[]; behaviorOcc=[]; behaviorpreOcc=[]; leftRightSplitVal=1000; firstSecondPanelSplitVal=500; flyNum=0; glomfound=zeros(1,39); oldFlyNum=9000; oldDate=[]; oldLobe=[]; for i=1:length(manualLabelledFolders) currname=manualLabelledFolders(i).name; if ~strcmp(currname(1),'.') if strcmp(currname(end),'1') currVol='Volumes'; else currVol='Volumes2'; end if strcmp(currname(end-2),'r') currLobe='rightLobe'; cL=2; else currLobe='leftLobe'; cL=1; end if strcmp(currname(1),'H') currDate=currname(8:13); else currDate=currname(1:6); end underscores=strfind(currname,'_'); currFlyNum=currname((underscores(1)+4):(underscores(2)-1)); if ~strcmp(currDate,oldDate) || ~strcmp(currFlyNum,oldFlyNum) flyNum=flyNum+1; end currFiles=dir([manualLabelHome '/' manualLabelledFolders(i).name]); currFiles=currFiles(3:end); for j=1:length(currFiles) cfcname=currFiles(j).name; if ~strcmp(cfcname(1),'.') % load manual label file, response data, and behavior data load([manualLabelHome '/' manualLabelledFolders(i).name '/' currFiles(j).name]) end end %behaviorOcc=[behaviorOcc occ_zeroed]; %behaviorpreOcc=[behaviorpreOcc preocc_zeroed]; behaviorOcc=[behaviorOcc occ-preocc]; behaviorpreOcc=[behaviorpreOcc preocc]; gs=median(grnResponse(:,:,odortimes),3); % use median responseTemp=NaN*zeros(length(publishedOR.gh146glomerulusNames),nodors+3); responseTempTimeCourse=NaN*zeros(length(publishedOR.gh146glomerulusNames)*length(odortimesfortimecourse),size(grnResponse,1)); responsesTensorTemp=NaN*zeros(length(publishedOR.gh146glomerulusNames),size(grnResponse,1),length(odortimesfortimecourse)); centroids=[]; for j=1:size(gs,2) coords=clusterInfoU{j}.Centroid; centroids=[centroids; coords]; end % normalize centroids mc=mean(centroids); sc=std(centroids); centroids=(centroids-mc)./sc; % fill in response matrix for j=1:size(gs,2) k=j; coords=centroids(j,:); responseTemp(k,:)=[(gs(:,j)-mean(gs,2))./transpose(std(gs')); coords']; % add x y z location glomsannotated(i)=glomsannotated(i)+1; glomfound(k)=glomfound(k)+1; for oo=1:nodors responseTempTimeCourse((((k-1)*length(odortimesfortimecourse)+1):k*length(odortimesfortimecourse)),oo)=grnResponse(oo,j,odortimesfortimecourse); responsesTensorTemp(k,oo,:)=grnResponse(oo,j,odortimesfortimecourse); end end responseTempT=responseTemp'; responsesGlomByOdor=[responsesGlomByOdor responseTempT(:)]; glombyodorflies=[glombyodorflies (flyNum+(cL-1)*leftRightSplitVal)]; oldFlyNum=currFlyNum; oldDate=currDate; oldLobe=currLobe; end end % % remove antenna lobes with fewer than X glomeruli annotated % glomthreshold=5; % toremove=find(glomsannotated<=glomthreshold); % responsesGlomByOdor(:,toremove)=[]; % responsesTimeCourseGlomByOdor(:,toremove)=[]; % glombyodorflies(toremove)=[]; % data points that correspond to each fly flyindices=cell(1,flyNum); flyindicesL=cell(1,flyNum); flyindicesR=cell(1,flyNum); for i=1:flyNum [temp temp2]=find(glombyodorflies==i); [tem3 temp4]=find(glombyodorflies==(i+leftRightSplitVal)); flyindices{i}=[temp2 temp4]; flyindicesL{i}=temp2; flyindicesR{i}=temp4; end % shuffle data points that correspond to each fly flyindicesShuffled=cell(1,flyNum); j=1; for i=randperm(flyNum) [temp temp2]=find(glombyodorflies==i); [tem3 temp4]=find(glombyodorflies==(i+leftRightSplitVal)); flyindicesShuffled{j}=[temp2 temp4]; j=j+1; end mycmap=distinguishable_colors(flyNum); %% reshape responseglombyodor allgloms=responsesGlomByOdor(:); allgloms=reshape(allgloms,nodors+3,length(allgloms)/(nodors+3)); % remove air and ethanol allgloms([1 8],:)=0; % run kmeans on allgloms km=39; [IDX, C, SUMD, D] = kmeans(allgloms', km); % fill in new matrix with sorted gloms unsupervisedSortedGlomResponse=NaN*zeros(nodors*39,size(allgloms,2)/39); for i=1:size(allgloms,2)/39 for j=1:39 try currglom=IDX((i-1)*39+j); for k=1:nodors if ~isnan(unsupervisedSortedGlomResponse((currglom-1)*nodors+k,i)) % if multiple clusters map to same glomerulus, average reuslts unsupervisedSortedGlomResponse((currglom-1)*nodors+k,i)=(unsupervisedSortedGlomResponse((currglom-1)*nodors+k,i)+allgloms(k,(i-1)*39+j))/2; else unsupervisedSortedGlomResponse((currglom-1)*nodors+k,i)=allgloms(k,(i-1)*39+j); end end catch end end end %% perform pca on responses clear responsesNoResponseRemoved fracIn=0.05; % best results when fracIn is high, ~0.5, only using high confidence glomeruli medianResponseOrTimeCourse=1; % 1 for median response only, 0 for full time course if medianResponseOrTimeCourse responsesNoResponseRemoved=unsupervisedSortedGlomResponse; else responsesNoResponseRemoved=responsesTimeCourseGlomByOdor; end % blank odors (when solenoids failed for example) % if medianResponseOrTimeCourse % odorstoremove=[2 6 9 10 12]; % blankThresh=[0.3 100 100 0.3 0.3]; % blank odor if 75% prctile response is below this (for odors that sporadically worked) % % % hard coded all flies before fly 23. 1:88 !!! Hard coded!! % for i=1:length(odorstoremove) % flyodorstoblank=find(prctile(responsesNoResponseRemoved(odorstoremove(i):nodors:end,:),75)<=blankThresh(i)); % for j=1:(size(responsesNoResponseRemoved,1)/nodors) % temp=find(isfinite(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),[1:88]))); % tofill=intersect(flyodorstoblank,temp); % if isfinite(nanmean(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),89:end))) % responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),tofill)=nanmean(responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),89:end)); % end % end % end % % % remove MCH for flies on 181108 % for j=1:(size(responsesNoResponseRemoved,1)/nodors) % tofill=find(isfinite(responsesNoResponseRemoved(((j-1)*nodors+11),89:100)))+88; % if isfinite(nanmean(responsesNoResponseRemoved(((j-1)*nodors+11),[1:89 101:end]))) % responsesNoResponseRemoved(((j-1)*nodors+11),tofill)=nanmean(responsesNoResponseRemoved(((j-1)*nodors+11),[1:89 101:end])); % end % end % % % odorstoremove=[1 8]; % delete air and ethanol % % for i=1:length(odorstoremove) % % for j=1:nodors % % responsesNoResponseRemoved(((j-1)*nodors+odorstoremove(i)),:)=[]; % % end % % end % else % % end % remove fully empty rows %totallyempty=~any(isfinite(responsesNoResponseRemoved),2); %responsesNoResponseRemoved(totallyempty,:)=[]; gNames=publishedOR.gh146glomerulusNames; glomsFound=glomfound; numFinite=sum(isfinite(responsesNoResponseRemoved),2); toRemove=find(numFinite/size(responsesNoResponseRemoved,2)<=fracIn); responsesNoResponseRemoved(toRemove,:)=[]; if medianResponseOrTimeCourse temp=nodors; fp=toRemove(find(mod(toRemove,temp)==1)); glomsremoved=((fp-1)/temp)+1; gNames(glomsremoved)=[]; glomsFound(glomsremoved)=[]; else temp=length(odortimesfortimecourse)*nodors; fp=toRemove(find(mod(toRemove,temp)==1)); glomsremoved=((fp-1)/temp)+1; gNames(glomsremoved)=[]; end % % fill nans with mean for i=1:size(responsesNoResponseRemoved,1) for j=1:size(responsesNoResponseRemoved,2) if isnan(responsesNoResponseRemoved(i,j)) responsesNoResponseRemoved(i,j)=nanmean(responsesNoResponseRemoved(i,:)); end end end % remove air and ethanol responsesNoResponseRemoved(1:nodors:end,:)=0; responsesNoResponseRemoved(8:nodors:end,:)=0; % fill missing values with linear interpolation % data=responsesNoResponseRemoved'; % dz=data; % dataFilled=fillWithRegressedValues(dz); % responsesNoResponseRemoved=dataFilled'; yesZscore=0; if yesZscore responsesNoResponseRemoved=responsesNoResponseRemoved'; responsesNoResponseRemoved=(responsesNoResponseRemoved-mean(responsesNoResponseRemoved))./std(responsesNoResponseRemoved); responsesNoResponseRemoved=responsesNoResponseRemoved'; end opt = statset('pca'); opt.Display='iter'; [COEFF, SCORE, LATENT, TSQUARED, EXPLAINED] = pca(responsesNoResponseRemoved','Options',opt); figure; plot(cumsum(EXPLAINED),'o-','LineWidth',3) ylabel('Variance Explained (%)') xlabel('PC #') box off set(gca,'FontSize',15) % calculate glom contribution to each pc glomcontributionAbsolute=zeros(length(gNames),size(COEFF,2)); glomcontributionMean=zeros(length(gNames),size(COEFF,2)); odorcontributionAbsolute=zeros(nodors,size(COEFF,2)); odorcontributionMean=zeros(nodors,size(COEFF,2)); for i=1:length(gNames) if medianResponseOrTimeCourse temp=nodors; else temp=length(odortimesfortimecourse)*nodors; end currind=((i-1)*temp)+1; for j=1:size(COEFF,2) glomcontributionMean(i,j)=mean(COEFF(currind:(currind+temp-1),j)); glomcontributionAbsolute(i,j)=mean(abs(COEFF(currind:(currind+temp-1),j))); end end if medianResponseOrTimeCourse for i=1:nodors for j=1:size(COEFF,2) odorcontributionMean(i,j)=mean(COEFF(i:nodors:end,j)); odorcontributionAbsolute(i,j)=mean(abs(COEFF(i:nodors:end,j))); end end end figure; imagesc(glomcontributionMean) set(gca,'ytick',1:length(gNames),'yticklabel',string(gNames),'FontSize',10) ytickangle(30) xlabel('PC #') set(gca,'FontSize',15) %% varianceToKeep=20; % percent of variance to keep co = SCORE; totalVarianceExplained=cumsum(EXPLAINED); pcsWithinVariance=find(totalVarianceExplained1 withinLLobe(j)=sqrt(sum((co(lcurr(1),1:pcstouse)-co(lcurr(2),1:pcstouse)).^2)); end if length(rcurr)>1 withinRLobe(j)=sqrt(sum((co(rcurr(1),1:pcstouse)-co(rcurr(2),1:pcstouse)).^2)); end if length(lcurr)>0 && length(rcurr)>0 withinDifferentLobe(j)=0; for kk=1:length(lcurr) for jj=1:length(rcurr) withinDifferentLobe(j)=withinDifferentLobe(j)+sqrt(sum((co(lcurr(kk),1:pcstouse)-co(rcurr(jj),1:pcstouse)).^2)); end end withinDifferentLobe(j)=withinDifferentLobe(j)/(length(lcurr)*length(rcurr)); end % calculate across-fly distances ltempsAcross=find(glombyodorflies~=(j)); ltempsAcross=ltempsAcross(find(glombyodorflies(ltempsAcross)~=(j+leftRightSplitVal))); ltempsAcross=ltempsAcross(find(glombyodorflies(ltempsAcross)leftRightSplitVal)); rcurrAcross=rtempsAcross; if length(lcurr)>0 acrossLLobe(j)=0; for jj=1:length(lcurrAcross) for kk=1:length(lcurr) acrossLLobe(j)=acrossLLobe(j)+sqrt(sum((co(lcurr(kk),1:pcstouse)-(co(lcurrAcross(jj),1:pcstouse))).^2)); end end acrossLLobe(j)=(acrossLLobe(j))/(length(lcurrAcross)*length(lcurr)); end if length(rcurr)>0 acrossRLobe(j)=0; for jj=1:length(rcurrAcross) for kk=1:length(rcurr) acrossRLobe(j)=acrossRLobe(j)+sqrt(sum((co(rcurr(kk),1:pcstouse)-(co(rcurrAcross(jj),1:pcstouse))).^2)); end end acrossRLobe(j)=(acrossRLobe(j))/(length(rcurrAcross)*length(rcurr)); end allAcross=[lcurrAcross rcurrAcross]; allCurr=[lcurr rcurr]; if length(lcurr)>0 && length(rcurr)>0 acrossAllLobe(j)=0; for jj=1:length(allAcross) for kk=1:length(allCurr) acrossAllLobe(j)=acrossAllLobe(j)+sqrt(sum((co(allCurr(kk),1:pcstouse)-(co(allAcross(jj),1:pcstouse))).^2)); end end acrossAllLobe(j)=acrossAllLobe(j)/(length(allAcross)*length(allCurr)); end end msize=10; lsize=3; % % % plot average across all odors for flies with both lobe data figure hold on % plot(0,0,'Marker',m{1},'Color','k') % plot(0,0,'Marker',m{2},'Color','k') %legend('Left Lobe','Right Lobe') for j=1:(flyNum) ltemps=find(glombyodorflies==(j)); lcurr=ltemps(1:end); rtemps=find(glombyodorflies==(j+1000)); rcurr=rtemps(1:end); if length(lcurr)>0 && length(rcurr)>0 plot(co(lcurr(1:size(lcurr,2)),1),co(lcurr(1:size(lcurr,2)),2),'Color',mycmap(j,:),'Marker','*','LineWidth',lsize,'MarkerSize',msize); plot(co(rcurr(1:size(rcurr,2)),1),co(rcurr(1:size(rcurr,2)),2),'Color',mycmap(j,:),'Marker','o','LineWidth',lsize,'MarkerSize',msize); plot([co(lcurr(1:size(lcurr,2)),1)' co(rcurr(1:size(rcurr,2)),1)' co(lcurr(1),1)],[co(lcurr(1:size(lcurr,2)),2)' co(rcurr(1:size(rcurr,2)),2)' co(lcurr(1),2)],'Color',mycmap(j,:),'LineStyle','--','LineWidth',lsize,'MarkerSize',msize); end end xlabel('PC 1 Score') ylabel('PC 2 Score') set(gca,'FontSize',15) figure hold on for j=1:(flyNum) ltemps=find(glombyodorflies==(j)); lcurr=ltemps(1:end); rtemps=find(glombyodorflies==(j+1000)); rcurr=rtemps(1:end); if length(lcurr)>0 && length(rcurr)>0 h3=plot(mean(co(lcurr(1:size(lcurr,2)),1)),mean(co(lcurr(1:size(lcurr,2)),2)),'Color',mycmap(j,:),'Marker','*','LineWidth',lsize,'MarkerSize',msize); %text(mean(co(lcurr(1:size(lcurr,2)),1)),mean(co(lcurr(1:size(lcurr,2)),2)),[num2str(j)],'FontSize',15) h4=plot(mean(co(rcurr(1:size(rcurr,2)),1)),mean(co(rcurr(1:size(rcurr,2)),2)),'Color',mycmap(j,:),'Marker','o','LineWidth',lsize,'MarkerSize',msize); h5=plot([mean(co(lcurr(1:size(lcurr,2)),1))' mean(co(rcurr(1:size(rcurr,2)),1))'],[mean(co(lcurr(1:size(lcurr,2)),2))' mean(co(rcurr(1:size(rcurr,2)),2))'],'Color',mycmap(j,:),'LineStyle','--','LineWidth',lsize,'MarkerSize',1); end end h1=plot(-100,-100,'Marker','o','MarkerSize',msize,'LineStyle','none','LineWidth',lsize,'Color','k'); h2=plot(-100,-100,'Marker','*','MarkerSize',msize,'LineStyle','none','LineWidth',lsize,'Color','k'); legend([h1 h2],{'Left Lobe','Right Lobe'}) legend boxoff box off axis([min(co(:,1)) max(co(:,1)) min(co(:,2)) max(co(:,2))]) xlabel('PC 1 Score') ylabel('PC 2 Score') set(gca,'FontSize',15) %Boxplots of distances % summarize across flies withinleft=withinLLobe; withinright=withinRLobe; withinacross=withinDifferentLobe; acrossleft=acrossLLobe; acrossright=acrossRLobe; acrossall=acrossAllLobe; figure boxplot([withinleft(:) withinright(:) withinacross(:) acrossleft(:) acrossright(:) acrossall(:)]) ylabel('Distance in Coding Space') xlabels{1}='Within Fly (Left Lobe)'; xlabels{2}='Within Fly (Right Lobe)'; xlabels{3}='Within Fly (Opposite Lobes)'; xlabels{4}='Across Fly (Left Lobe)'; xlabels{5}='Across Fly (Right Lobe)'; xlabels{6}='Across Fly (Both Lobes)'; set(gca,'xtick',1:6,'xticklabel',xlabels,'FontSize',10) xtickangle(30) box off set(gca,'FontSize',15) %% find predictive power of each pc warning('off') iters=10; trainsize=20; RON=zeros(size(co,2),iters); PON=zeros(size(co,2),iters); ROFF=zeros(size(co,2),iters); POFF=zeros(size(co,2),iters); totalCorr=zeros(1,size(co,2)); totalCorrS=zeros(1,size(co,2)); totalP=zeros(1,size(co,2)); totalPs=zeros(1,size(co,2)); for pcstouse=1:size(co,2) predictor=(co(:,pcstouse)); predictor=predictor'; fitCorr=zeros(1,iters); fitCorrs=zeros(1,iters); fitP=zeros(1,iters); fitPs=zeros(1,iters); for ii=1:iters temp=randperm(flyNum); trainflies=temp(1:floor(length(temp)*trainsize/100)); validationflies=temp(ceil(length(temp)*trainsize/100):end); flyTruePref=zeros(1,length(trainflies)); flyPredictedPref=zeros(1,length(trainflies)); flyTruePrefShuffled=zeros(1,length(trainflies)); for i=1:length(trainflies) flyTruePref(i)=mean(behaviorOcc(flyindices{trainflies(i)})); flyPredictedPref(i)=mean(predictor(1,flyindices{trainflies(i)})); flyTruePrefShuffled(i)=mean(behaviorOcc(flyindicesShuffled{trainflies(i)})); end validationflyTruePref=zeros(1,length(validationflies)); validationflyPredictedPref=zeros(1,length(validationflies)); validationflyTruePrefShuffled=zeros(1,length(validationflies)); for i=1:length(validationflies) validationflyTruePref(i)=mean(behaviorOcc(flyindices{validationflies(i)})); validationflyPredictedPref(i)=mean(predictor(1,flyindices{validationflies(i)})); validationflyTruePrefShuffled(i)=mean(behaviorOcc(flyindicesShuffled{validationflies(i)})); end % generate linear model linModel=fitlm(flyPredictedPref,flyTruePref); % evaluate predictions for training data neuralPrediction=predict(linModel,flyPredictedPref'); % evaluate predictions for test data neuralPredictionValidation=predict(linModel,validationflyPredictedPref'); [r p]=corrcoef(neuralPredictionValidation,validationflyTruePref); %[r p]=corrcoef(neuralPrediction,flyTruePref); fitCorr(ii)=r(1,2); fitP(ii)=p(1,2); % generate linear model with shuffled data linModelShuffled=fitlm(flyPredictedPref,flyTruePrefShuffled); % evaluate predictions for shuffled training data neuralPredictionShuffled=predict(linModelShuffled,flyPredictedPref'); % evaluate predictions for shuffled test data neuralPredictionValidationShuffled=predict(linModelShuffled,validationflyPredictedPref'); [rs ps]=corrcoef(neuralPredictionValidationShuffled,validationflyTruePrefShuffled); %[rs ps]=corrcoef(neuralPredictionShuffled,flyTruePrefShuffled); fitCorrs(ii)=rs(1,2); fitPs(ii)=ps(1,2); end totalCorr(pcstouse)=mean(fitCorr); totalCorrS(pcstouse)=mean(fitCorrs); totalP(pcstouse)=mean(fitP); totalPs(pcstouse)=mean(fitPs); if mod(pcstouse,1)==0 disp(['calculated fit using ' num2str(pcstouse) ' PCs of ' num2str(size(co,2))]) end end left_color=[0 0 0]; right_color=[0.5 0 0.9]; fig=figure; set(fig,'defaultAxesColorOrder',[left_color; right_color]); yyaxis left plot(totalCorr,'o-','LineWidth',2) ylabel('correlation') hold on yyaxis right ylabel('p-value') plot(log10(totalP),'-','LineWidth',2) xlabel('PC #') set(gca,'FontSize',15) fig=figure; set(fig,'defaultAxesColorOrder',[left_color; right_color]); yyaxis left plot(totalCorrS,'o-','LineWidth',2) ylabel('correlation') hold on yyaxis right ylabel('p-value') plot(log10(totalPs),'-','LineWidth',2) xlabel('# PCs') set(gca,'FontSize',15) figure subplot(2,1,1) hist(totalCorr,20) subplot(2,1,2) hist(totalCorrS,20) %% use fitlm pcstouse=[2]; behaviorprediction=(SCORE(:,pcstouse)); flyTruePref=zeros(1,flyNum); flyPredictedPref=zeros(1,flyNum); ally=behaviorOcc'; linmodel=fitlm(behaviorprediction,ally); myprediction=predict(linmodel,behaviorprediction); figure plot(myprediction,ally,'o','LineWidth',3) xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel nactivity=zeros(flyNum,length(pcstouse)); for i=1:flyNum flyTruePref(i)=mean(ally(flyindices{i})); flyPredictedPref(i)=mean(mean(behaviorprediction(flyindices{i},:))); nactivity(i,:)=mean(behaviorprediction(flyindices{i},:)); end linmodel=fitlm(nactivity,flyTruePref); myprediction=predict(linmodel,nactivity); figure plot(myprediction,flyTruePref,'o','LineWidth',3) for i=1:flyNum hold on %text(myprediction(i)+0.01,flyTruePref(i),num2str(i),'FontSize',15) end xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel beta=linmodel.Coefficients.Estimate; PCContribution=COEFF(:,pcstouse)*beta(2:end); figure; plot(PCContribution,'*','LineWidth',2,'MarkerSize',8) hold on plot(zeros(1,length(PCContribution(:,1))),'k--','LineWidth',3) j=1; for i=1:nodors:length(PCContribution) plot((i-0.5)*ones(1,5), linspace(min(PCContribution),max(PCContribution),5),'k--','LineWidth',2) %text(i+floor(nodors/3),min(PCContribution),num2str(glomsFound(j)),'FontSize',15) j=j+1; end set(gca,'xtick',(1:nodors:length(PCContribution))+floor(nodors/2),'xticklabel',string(gNames),'FontSize',10) xtickangle(30) ylabel('PC 2 loadings') box off set(gca,'FontSize',15) currpc=COEFF(:,pcstouse);