clear all close all rng('default') manualLabelHome='/Users/mattchurgin/Dropbox/flyimaging/analysis/PN_analysis/added181218plus2019'; publishedOdorPath='/Users/mattchurgin/Desktop/dblab/mattFunctions/odorpanelResponsesDoOR/odorPanel_12/odorPanel_12_DoORData.mat'; load(publishedOdorPath); manualLabelledFolders=dir(manualLabelHome); manualLabelledFolders=manualLabelledFolders(3:end); labels=cell(1,length(manualLabelledFolders)); glomsannotated=zeros(1,length(manualLabelledFolders)); totalPutativeGloms=zeros(1,length(manualLabelledFolders)); nodors=13; odortimes=[6:9]; % hard-coded specific time interval for summarizing odor response odortimesfortimecourse=[1:18]; responsesTensorFullyOrthogonal=NaN*zeros(27,2,39,nodors,length(odortimesfortimecourse)); % flynum HARD CODED responsesGlomByOdor=[]; responsesTimeCourseGlomByOdor=[]; flyodors=[]; flygloms=[]; glombyodorflies=[]; behaviorOcc=[]; behaviorpreOcc=[]; leftRightSplitVal=1000; firstSecondPanelSplitVal=500; flyNum=0; glomfound=zeros(1,39); oldFlyNum=9000; oldDate=[]; oldLobe=[]; for i=1:length(manualLabelledFolders) currname=manualLabelledFolders(i).name; if ~strcmp(currname(1),'.') if strcmp(currname(end),'1') currVol='Volumes'; else currVol='Volumes2'; end if strcmp(currname(end-2),'r') currLobe='rightLobe'; cL=2; else currLobe='leftLobe'; cL=1; end if strcmp(currname(1),'H') currDate=currname(8:13); else currDate=currname(1:6); end underscores=strfind(currname,'_'); currFlyNum=currname((underscores(1)+4):(underscores(2)-1)); if ~strcmp(currDate,oldDate) || ~strcmp(currFlyNum,oldFlyNum) flyNum=flyNum+1; end currFiles=dir([manualLabelHome '/' manualLabelledFolders(i).name]); currFiles=currFiles(3:end); for j=1:length(currFiles) cfcname=currFiles(j).name; if ~strcmp(cfcname(1),'.') % load manual label file, response data, and behavior data load([manualLabelHome '/' manualLabelledFolders(i).name '/' currFiles(j).name]) end end %behaviorOcc=[behaviorOcc occ_zeroed]; %behaviorpreOcc=[behaviorpreOcc preocc_zeroed]; behaviorOcc=[behaviorOcc occ-preocc]; %behaviorOcc=[behaviorOcc occ]; behaviorpreOcc=[behaviorpreOcc preocc]; manualClusterLabels=clusterLabels; totalPutativeGloms(i)=length(manualClusterLabels); gs=median(grnResponse(:,:,odortimes),3); % use median %gs=prctile(grnResponse(:,:,odortimes),75); % use percentile responseTemp=NaN*zeros(length(publishedOR.gh146glomerulusNames),nodors); responseTempTimeCourse=NaN*zeros(length(publishedOR.gh146glomerulusNames)*length(odortimesfortimecourse),size(grnResponse,1)); responsesTensorTemp=NaN*zeros(length(publishedOR.gh146glomerulusNames),size(grnResponse,1),length(odortimesfortimecourse)); labels{i}.manual=cell(1,length(manualClusterLabels)); % record manual labels for j=1:length(manualClusterLabels) labels{i}.manual{j}=manualClusterLabels{j}; end % fill in response matrix for j=1:length(manualClusterLabels) for k=1:length(publishedOR.gh146glomerulusNames) if strcmp(labels{i}.manual{j},publishedOR.gh146glomerulusNames{k}) responseTemp(k,:)=gs(:,j); glomsannotated(i)=glomsannotated(i)+1; glomfound(k)=glomfound(k)+1; for oo=1:nodors responseTempTimeCourse((((k-1)*length(odortimesfortimecourse)+1):k*length(odortimesfortimecourse)),oo)=grnResponse(oo,j,odortimesfortimecourse); responsesTensorTemp(k,oo,:)=grnResponse(oo,j,odortimesfortimecourse); end break end end end responseTempT=responseTemp'; responseTempTimeCourseT=responseTempTimeCourse'; responsesTensorFullyOrthogonal(flyNum,cL,:,:,:)=responsesTensorTemp; responsesGlomByOdor=[responsesGlomByOdor responseTempT(:)]; responsesTimeCourseGlomByOdor=[responsesTimeCourseGlomByOdor responseTempTimeCourseT(:)]; glombyodorflies=[glombyodorflies (flyNum+(cL-1)*leftRightSplitVal)]; oldFlyNum=currFlyNum; oldDate=currDate; oldLobe=currLobe; end end % % remove antenna lobes with fewer than X glomeruli annotated % glomthreshold=5; % toremove=find(glomsannotated<=glomthreshold); % responsesGlomByOdor(:,toremove)=[]; % responsesTimeCourseGlomByOdor(:,toremove)=[]; % glombyodorflies(toremove)=[]; % data points that correspond to each fly flyindices=cell(1,flyNum); flyindicesL=cell(1,flyNum); flyindicesR=cell(1,flyNum); for i=1:flyNum [temp temp2]=find(glombyodorflies==i); [tem3 temp4]=find(glombyodorflies==(i+leftRightSplitVal)); flyindices{i}=[temp2 temp4]; flyindicesL{i}=temp2; flyindicesR{i}=temp4; end % shuffle data points that correspond to each fly flyindicesShuffled=cell(1,flyNum); j=1; for i=randperm(flyNum) [temp temp2]=find(glombyodorflies==i); [tem3 temp4]=find(glombyodorflies==(i+leftRightSplitVal)); flyindicesShuffled{j}=[temp2 temp4]; j=j+1; end mycmap=distinguishable_colors(flyNum); % figure; % for i=1:length(glomsannotated) % plot([1 2],[glomsannotated(i) totalPutativeGloms(i)],'Marker','o','LineStyle','--','LineWidth',2) % hold on % end % set(gca,'XTick',[1:2]) % set(gca,'XTickLabel',[{'Annotated'},{'Available'}]) % axis([0.5 2.5 0 40]) % ylabel('Glomeruli') % box off % set(gca,'FontSize',15) %% perform pca on responses clear responsesNoResponseRemoved fracIn=0.4; % best results when fracIn is high, ~0.5, only using high confidence glomeruli medianResponseOrTimeCourse=1; % 1 for median response only, 0 for full time course if medianResponseOrTimeCourse responsesNoResponseRemoved=responsesGlomByOdor; else responsesNoResponseRemoved=responsesTimeCourseGlomByOdor; end % remove fully empty rows %totallyempty=~any(isfinite(responsesNoResponseRemoved),2); %responsesNoResponseRemoved(totallyempty,:)=[]; gNames=publishedOR.gh146glomerulusNames; glomsFound=glomfound; numFinite=sum(isfinite(responsesNoResponseRemoved),2); toRemove=find(numFinite/size(responsesNoResponseRemoved,2)<=fracIn); responsesNoResponseRemoved(toRemove,:)=[]; % remove air and ethanol %responsesNoResponseRemoved(1:13:end)=0; %responsesNoResponseRemoved(8:13:end)=0; if medianResponseOrTimeCourse temp=nodors; fp=toRemove(find(mod(toRemove,temp)==1)); glomsremoved=((fp-1)/temp)+1; gNames(glomsremoved)=[]; glomsFound(glomsremoved)=[]; else temp=length(odortimesfortimecourse)*nodors; fp=toRemove(find(mod(toRemove,temp)==1)); glomsremoved=((fp-1)/temp)+1; gNames(glomsremoved)=[]; end % % fill nans with mean for i=1:size(responsesNoResponseRemoved,1) for j=1:size(responsesNoResponseRemoved,2) if isnan(responsesNoResponseRemoved(i,j)) responsesNoResponseRemoved(i,j)=nanmean(responsesNoResponseRemoved(i,:)); end end end % fill missing values with linear interpolation % data=responsesNoResponseRemoved'; % dz=data; % dataFilled=fillWithRegressedValues(dz); % responsesNoResponseRemoved=dataFilled'; yesZscore=0; if yesZscore responsesNoResponseRemoved=responsesNoResponseRemoved'; responsesNoResponseRemoved=(responsesNoResponseRemoved-mean(responsesNoResponseRemoved))./std(responsesNoResponseRemoved); responsesNoResponseRemoved=responsesNoResponseRemoved'; end opt = statset('pca'); opt.Display='iter'; [COEFF, SCORE, LATENT, TSQUARED, EXPLAINED] = pca(responsesNoResponseRemoved','Options',opt); figure; plot(cumsum(EXPLAINED),'o-','LineWidth',3) ylabel('Variance Explained (%)') xlabel('PC #') box off set(gca,'FontSize',15) % calculate glom contribution to each pc glomcontributionAbsolute=zeros(length(gNames),size(COEFF,2)); glomcontributionMean=zeros(length(gNames),size(COEFF,2)); odorcontributionAbsolute=zeros(nodors,size(COEFF,2)); odorcontributionMean=zeros(nodors,size(COEFF,2)); for i=1:length(gNames) if medianResponseOrTimeCourse temp=nodors; else temp=length(odortimesfortimecourse)*nodors; end currind=((i-1)*temp)+1; for j=1:size(COEFF,2) glomcontributionMean(i,j)=mean(COEFF(currind:(currind+temp-1),j)); glomcontributionAbsolute(i,j)=mean(abs(COEFF(currind:(currind+temp-1),j))); end end if medianResponseOrTimeCourse for i=1:nodors for j=1:size(COEFF,2) odorcontributionMean(i,j)=mean(COEFF(i:nodors:end,j)); odorcontributionAbsolute(i,j)=mean(abs(COEFF(i:nodors:end,j))); end end end figure; imagesc(glomcontributionMean) set(gca,'ytick',1:length(gNames),'yticklabel',string(gNames),'FontSize',10) ytickangle(30) xlabel('PC #') set(gca,'FontSize',15) %% varianceToKeep=100; % percent of variance to keep co = SCORE; totalVarianceExplained=cumsum(EXPLAINED); pcsWithinVariance=find(totalVarianceExplained1 withinLLobe(j)=sqrt(sum((co(lcurr(1),1:pcstouse)-co(lcurr(2),1:pcstouse)).^2)); end if length(rcurr)>1 withinRLobe(j)=sqrt(sum((co(rcurr(1),1:pcstouse)-co(rcurr(2),1:pcstouse)).^2)); end if length(lcurr)>0 && length(rcurr)>0 withinDifferentLobe(j)=0; for kk=1:length(lcurr) for jj=1:length(rcurr) withinDifferentLobe(j)=withinDifferentLobe(j)+sqrt(sum((co(lcurr(kk),1:pcstouse)-co(rcurr(jj),1:pcstouse)).^2)); end end withinDifferentLobe(j)=withinDifferentLobe(j)/(length(lcurr)*length(rcurr)); end % calculate across-fly distances ltempsAcross=find(glombyodorflies~=(j)); ltempsAcross=ltempsAcross(find(glombyodorflies(ltempsAcross)~=(j+leftRightSplitVal))); ltempsAcross=ltempsAcross(find(glombyodorflies(ltempsAcross)leftRightSplitVal)); rcurrAcross=rtempsAcross; if length(lcurr)>0 acrossLLobe(j)=0; for jj=1:length(lcurrAcross) for kk=1:length(lcurr) acrossLLobe(j)=acrossLLobe(j)+sqrt(sum((co(lcurr(kk),1:pcstouse)-(co(lcurrAcross(jj),1:pcstouse))).^2)); end end acrossLLobe(j)=(acrossLLobe(j))/(length(lcurrAcross)*length(lcurr)); end if length(rcurr)>0 acrossRLobe(j)=0; for jj=1:length(rcurrAcross) for kk=1:length(rcurr) acrossRLobe(j)=acrossRLobe(j)+sqrt(sum((co(rcurr(kk),1:pcstouse)-(co(rcurrAcross(jj),1:pcstouse))).^2)); end end acrossRLobe(j)=(acrossRLobe(j))/(length(rcurrAcross)*length(rcurr)); end allAcross=[lcurrAcross rcurrAcross]; allCurr=[lcurr rcurr]; if length(lcurr)>0 && length(rcurr)>0 acrossAllLobe(j)=0; for jj=1:length(allAcross) for kk=1:length(allCurr) acrossAllLobe(j)=acrossAllLobe(j)+sqrt(sum((co(allCurr(kk),1:pcstouse)-(co(allAcross(jj),1:pcstouse))).^2)); end end acrossAllLobe(j)=acrossAllLobe(j)/(length(allAcross)*length(allCurr)); end end msize=10; lsize=3; % % % plot average across all odors for flies with both lobe data figure hold on % plot(0,0,'Marker',m{1},'Color','k') % plot(0,0,'Marker',m{2},'Color','k') %legend('Left Lobe','Right Lobe') for j=1:(flyNum) ltemps=find(glombyodorflies==(j)); lcurr=ltemps(1:end); rtemps=find(glombyodorflies==(j+1000)); rcurr=rtemps(1:end); if length(lcurr)>0 && length(rcurr)>0 plot(co(lcurr(1:size(lcurr,2)),1),co(lcurr(1:size(lcurr,2)),2),'Color',mycmap(j,:),'Marker','*','LineWidth',lsize,'MarkerSize',msize); plot(co(rcurr(1:size(rcurr,2)),1),co(rcurr(1:size(rcurr,2)),2),'Color',mycmap(j,:),'Marker','o','LineWidth',lsize,'MarkerSize',msize); plot([co(lcurr(1:size(lcurr,2)),1)' co(rcurr(1:size(rcurr,2)),1)' co(lcurr(1),1)],[co(lcurr(1:size(lcurr,2)),2)' co(rcurr(1:size(rcurr,2)),2)' co(lcurr(1),2)],'Color',mycmap(j,:),'LineStyle','--','LineWidth',lsize,'MarkerSize',msize); end end xlabel('PC 1 Score') ylabel('PC 2 Score') set(gca,'FontSize',15) figure hold on for j=1:(flyNum) ltemps=find(glombyodorflies==(j)); lcurr=ltemps(1:end); rtemps=find(glombyodorflies==(j+1000)); rcurr=rtemps(1:end); if length(lcurr)>0 && length(rcurr)>0 h3=plot(mean(co(lcurr(1:size(lcurr,2)),1)),mean(co(lcurr(1:size(lcurr,2)),2)),'Color',mycmap(j,:),'Marker','*','LineWidth',lsize,'MarkerSize',msize); %text(mean(co(lcurr(1:size(lcurr,2)),1)),mean(co(lcurr(1:size(lcurr,2)),2)),[num2str(j)],'FontSize',15) h4=plot(mean(co(rcurr(1:size(rcurr,2)),1)),mean(co(rcurr(1:size(rcurr,2)),2)),'Color',mycmap(j,:),'Marker','o','LineWidth',lsize,'MarkerSize',msize); h5=plot([mean(co(lcurr(1:size(lcurr,2)),1))' mean(co(rcurr(1:size(rcurr,2)),1))'],[mean(co(lcurr(1:size(lcurr,2)),2))' mean(co(rcurr(1:size(rcurr,2)),2))'],'Color',mycmap(j,:),'LineStyle','--','LineWidth',lsize,'MarkerSize',1); end end h1=plot(-100,-100,'Marker','o','MarkerSize',msize,'LineStyle','none','LineWidth',lsize,'Color','k'); h2=plot(-100,-100,'Marker','*','MarkerSize',msize,'LineStyle','none','LineWidth',lsize,'Color','k'); legend([h1 h2],{'Left Lobe','Right Lobe'}) legend boxoff box off axis([min(co(:,1)) max(co(:,1)) min(co(:,2)) max(co(:,2))]) xlabel('PC 1 Score') ylabel('PC 2 Score') set(gca,'FontSize',15) %Boxplots of distances % summarize across flies withinleft=withinLLobe; withinright=withinRLobe; withinacross=withinDifferentLobe; acrossleft=acrossLLobe; acrossright=acrossRLobe; acrossall=acrossAllLobe; figure boxplot([withinleft(:) withinright(:) withinacross(:) acrossleft(:) acrossright(:) acrossall(:)]) ylabel('Distance in Coding Space') xlabels{1}='Within Fly (Left Lobe)'; xlabels{2}='Within Fly (Right Lobe)'; xlabels{3}='Within Fly (Opposite Lobes)'; xlabels{4}='Across Fly (Left Lobe)'; xlabels{5}='Across Fly (Right Lobe)'; xlabels{6}='Across Fly (Both Lobes)'; set(gca,'xtick',1:6,'xticklabel',xlabels,'FontSize',10) xtickangle(30) box off set(gca,'FontSize',15) %% use fitlm pcstouse=[2]; behaviorprediction=(SCORE(:,pcstouse)); flyTruePref=zeros(1,flyNum); flyPredictedPref=zeros(1,flyNum); ally=behaviorOcc'; linmodel=fitlm(behaviorprediction,ally); myprediction=predict(linmodel,behaviorprediction); figure plot(myprediction,ally,'o','LineWidth',3) xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel nactivity=zeros(flyNum,length(pcstouse)); for i=1:flyNum flyTruePref(i)=mean(ally(flyindices{i})); flyPredictedPref(i)=mean(mean(behaviorprediction(flyindices{i},:))); nactivity(i,:)=mean(behaviorprediction(flyindices{i},:)); end linmodel=fitlm(nactivity,flyTruePref); myprediction=predict(linmodel,nactivity); figure plot(myprediction,flyTruePref,'o','LineWidth',3) for i=1:flyNum hold on text(myprediction(i)+0.01,flyTruePref(i),num2str(i),'FontSize',15) end xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel beta=linmodel.Coefficients.Estimate; PCContribution=COEFF(:,pcstouse)*beta(2:end); figure; plot(PCContribution,'*','LineWidth',2,'MarkerSize',8) hold on plot(zeros(1,length(PCContribution(:,1))),'k--','LineWidth',3) j=1; for i=1:nodors:length(PCContribution) plot((i-0.5)*ones(1,5), linspace(min(PCContribution),max(PCContribution),5),'k--','LineWidth',2) %text(i+floor(nodors/3),min(PCContribution),num2str(glomsFound(j)),'FontSize',15) j=j+1; end set(gca,'xtick',(1:nodors:length(PCContribution))+floor(nodors/2),'xticklabel',string(gNames),'FontSize',10) xtickangle(30) ylabel('PC 2 loadings') box off set(gca,'FontSize',15) currpc=PCContribution; % get odor valences for i=1:nodors odorValence(i)=mean(PCContribution(i:nodors:end)); end %figure; %plot((currpc(2:13:end)),(currpc(11:13:end)),'o') %% apply training data predictor to testdata pncolor=[0 0.8 0]; matchedResponses=responsesNoResponseRemoved; COEFFmatched=COEFF; traindata=load('181218_pc2.mat'); trainedPC=traindata.currpc'; %traindata=load('181218_bestpredictors.mat'); %trainedPC=traindata.currpc(3,:)'; trainedGNames=traindata.gNames; % match available gloms in test data with gloms from trainedPC testGlomInTrainGlom=zeros(1,length(gNames)); for i=1:length(gNames) for j=1:length(trainedGNames) if strcmp(gNames{i},trainedGNames{j}) testGlomInTrainGlom(i)=1; break end end end % remove data for test gloms not in train set todeleteTest=[]; for i=1:length(gNames) if ~testGlomInTrainGlom(i) todeleteTest=[todeleteTest ((nodors*(i-1)+1):(nodors*i))]; end end matchedResponses(todeleteTest,:)=[]; trainGlomInTestGlom=zeros(1,length(trainedGNames)); for i=1:length(trainedGNames) for j=1:length(gNames) if strcmp(gNames{j},trainedGNames{i}) trainGlomInTestGlom(i)=1; break end end end % remove data for train gloms PC not in test set todeleteTrain=[]; for i=1:length(trainedGNames) if ~trainGlomInTestGlom(i) todeleteTrain=[todeleteTrain ((nodors*(i-1)+1):(nodors*i))]; end end trainedPC(todeleteTrain)=[]; COEFFmatched(todeleteTest,:)=[]; % measure correlation between the trained pc and test data PC pccorr=zeros(1,10); for i=1:10 tempr=corr(trainedPC,COEFFmatched(:,i)); pccorr(i)=tempr; end behaviorprediction=matchedResponses'*trainedPC; flyTruePref=zeros(1,flyNum); flyPredictedPref=zeros(1,flyNum); ally=behaviorOcc'; linmodel=fitlm(behaviorprediction,ally); myprediction=predict(linmodel,behaviorprediction); figure plot(myprediction,ally,'o','LineWidth',3) xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel nactivity=zeros(flyNum,1); for i=1:flyNum flyTruePref(i)=mean(ally(flyindices{i})); flyPredictedPref(i)=mean(mean(behaviorprediction(flyindices{i},:))); nactivity(i,:)=mean(behaviorprediction(flyindices{i},:)); end linmodel=fitlm(nactivity,flyTruePref); myprediction=predict(linmodel,nactivity); figure plot(myprediction,flyTruePref,'o','Color',pncolor,'LineWidth',3) for i=1:flyNum hold on text(myprediction(i)+0.01,flyTruePref(i),num2str(i),'FontSize',15) end xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) text(0,0,['R^2 = ' num2str(linmodel.Rsquared.Adjusted)],'FontSize',15) box off linmodel beta=linmodel.Coefficients.Estimate; figure; plot(trainedPC,'.','Color',pncolor,'LineWidth',2,'MarkerSize',20) hold on plot(zeros(1,length(trainedPC(:,1))),'k--','LineWidth',3) j=1; for i=1:nodors:length(trainedPC) plot((i-0.5)*ones(1,5), linspace(min(trainedPC),max(trainedPC),5),'k--','LineWidth',2) %text(i+floor(nodors/3),min(PCContribution),num2str(glomsFound(j)),'FontSize',15) j=j+1; end set(gca,'xtick',(1:nodors:length(trainedPC))+floor(nodors/2),'xticklabel',string(gNames),'FontSize',10) xtickangle(30) ylabel('Trained PC loadings') box off set(gca,'FontSize',15) %% apply training data predictor to testdata. use two predictors matchedResponses=responsesNoResponseRemoved; COEFFmatched=COEFF; traindata=load('181218_pc2.mat'); traindata2=load('181218_pc5.mat'); trainedPC=[traindata.currpc' traindata2.currpc']; %traindata=load('181218_bestpredictors.mat'); %trainedPC=traindata.currpc(3,:)'; trainedGNames=traindata.gNames; % match available gloms in test data with gloms from trainedPC testGlomInTrainGlom=zeros(1,length(gNames)); for i=1:length(gNames) for j=1:length(trainedGNames) if strcmp(gNames{i},trainedGNames{j}) testGlomInTrainGlom(i)=1; break end end end % remove data for test gloms not in train set todeleteTest=[]; for i=1:length(gNames) if ~testGlomInTrainGlom(i) todeleteTest=[todeleteTest ((nodors*(i-1)+1):(nodors*i))]; end end matchedResponses(todeleteTest,:)=[]; trainGlomInTestGlom=zeros(1,length(trainedGNames)); for i=1:length(trainedGNames) for j=1:length(gNames) if strcmp(gNames{j},trainedGNames{i}) trainGlomInTestGlom(i)=1; break end end end % remove data for train gloms PC not in test set todeleteTrain=[]; for i=1:length(trainedGNames) if ~trainGlomInTestGlom(i) todeleteTrain=[todeleteTrain ((nodors*(i-1)+1):(nodors*i))]; end end trainedPC(todeleteTrain,:)=[]; behaviorprediction=matchedResponses'*trainedPC; flyTruePref=zeros(1,flyNum); flyPredictedPref=zeros(1,flyNum); ally=behaviorOcc'; linmodel=fitlm(behaviorprediction,ally); myprediction=predict(linmodel,behaviorprediction); figure plot(myprediction,ally,'o','Color',pncolor,'LineWidth',3) xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel nactivity=zeros(flyNum,2); for i=1:flyNum flyTruePref(i)=mean(ally(flyindices{i})); flyPredictedPref(i)=mean(mean(behaviorprediction(flyindices{i},:))); nactivity(i,:)=mean(behaviorprediction(flyindices{i},:)); end linmodel=fitlm(nactivity,flyTruePref); myprediction=predict(linmodel,nactivity); figure plot(myprediction,flyTruePref,'o','Color',pncolor,'LineWidth',3) for i=1:flyNum hold on %text(myprediction(i)+0.01,flyTruePref(i),num2str(i),'FontSize',15) end xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel %% apply LASSO training data predictor to testdata pncolor=[0 0.8 0]; matchedResponses=responsesNoResponseRemoved; COEFFmatched=COEFF; traindata=load('190220_lassoCoeffs_alphaE-5.mat'); trainedPC=traindata.mypredictor; trainedGNames=traindata.gNames; % match available gloms in test data with gloms from trainedPC testGlomInTrainGlom=zeros(1,length(gNames)); for i=1:length(gNames) for j=1:length(trainedGNames) if strcmp(gNames{i},trainedGNames{j}) testGlomInTrainGlom(i)=1; break end end end % remove data for test gloms not in train set todeleteTest=[]; for i=1:length(gNames) if ~testGlomInTrainGlom(i) todeleteTest=[todeleteTest ((nodors*(i-1)+1):(nodors*i))]; end end matchedResponses(todeleteTest,:)=[]; trainGlomInTestGlom=zeros(1,length(trainedGNames)); for i=1:length(trainedGNames) for j=1:length(gNames) if strcmp(gNames{j},trainedGNames{i}) trainGlomInTestGlom(i)=1; break end end end % remove data for train gloms PC not in test set todeleteTrain=[]; for i=1:length(trainedGNames) if ~trainGlomInTestGlom(i) todeleteTrain=[todeleteTrain ((nodors*(i-1)+1):(nodors*i))]; end end trainedPC(todeleteTrain)=[]; behaviorprediction=matchedResponses'*trainedPC; flyTruePref=zeros(1,flyNum); flyPredictedPref=zeros(1,flyNum); ally=behaviorOcc'; linmodel=fitlm(behaviorprediction,ally); myprediction=predict(linmodel,behaviorprediction); figure plot(myprediction,ally,'o','LineWidth',3) xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel nactivity=zeros(flyNum,1); for i=1:flyNum flyTruePref(i)=mean(ally(flyindices{i})); flyPredictedPref(i)=mean(mean(behaviorprediction(flyindices{i},:))); nactivity(i,:)=mean(behaviorprediction(flyindices{i},:)); end linmodel=fitlm(nactivity,flyTruePref); myprediction=predict(linmodel,nactivity); figure plot(myprediction,flyTruePref,'o','Color',pncolor,'LineWidth',3) for i=1:flyNum hold on text(myprediction(i)+0.01,flyTruePref(i),num2str(i),'FontSize',15) end xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) text(0,0,['R^2 = ' num2str(linmodel.Rsquared.Adjusted)],'FontSize',15) box off linmodel beta=linmodel.Coefficients.Estimate; figure; plot(trainedPC,'*','LineWidth',2,'MarkerSize',8) hold on plot(zeros(1,length(trainedPC(:,1))),'k--','LineWidth',3) j=1; for i=1:nodors:length(trainedPC) plot((i-0.5)*ones(1,5), linspace(min(trainedPC),max(trainedPC),5),'k--','LineWidth',2) %text(i+floor(nodors/3),min(PCContribution),num2str(glomsFound(j)),'FontSize',15) j=j+1; end set(gca,'xtick',(1:nodors:length(trainedPC))+floor(nodors/2),'xticklabel',string(gNames),'FontSize',10) xtickangle(30) ylabel('Trained PC loadings') box off set(gca,'FontSize',15) %% use average DC2 - DM2 activity and relative oct/mch activation pncolor=[0 0.7 0]; behaviorprediction=(mean(responsesNoResponseRemoved(14:26,:),1)-mean(responsesNoResponseRemoved(53:65,:),1))./(mean(responsesNoResponseRemoved(14:26,:),1)+mean(responsesNoResponseRemoved(53:65,:),1)); % add in DM1 and DM3 in same direction as DC1 (from PC2) %behaviorprediction=mean(responsesNoResponseRemoved(1:13,:),1)-mean(responsesNoResponseRemoved(40:52,:),1)+0.2*mean(responsesNoResponseRemoved(53:65,:),1)+0.2*mean(responsesNoResponseRemoved(27:39,:),1); % only use DM1 and DM3 %behaviorprediction=mean(responsesNoResponseRemoved(53:65,:),1)+mean(responsesNoResponseRemoved(27:39,:),1); behaviorprediction2=mean((responsesNoResponseRemoved(2:13:end,:)-responsesNoResponseRemoved(11:13:end,:)),1); %behaviorprediction=[behaviorprediction' behaviorprediction2']; behaviorprediction=[behaviorprediction']; flyTruePref=zeros(1,flyNum); flyPredictedPref=zeros(1,flyNum); ally=behaviorOcc'; linmodel=fitlm(behaviorprediction,ally); myprediction=predict(linmodel,behaviorprediction); figure plot(myprediction,ally,'o','LineWidth',3) xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel nactivity=zeros(flyNum,1); for i=1:flyNum flyTruePref(i)=mean(ally(flyindices{i})); flyPredictedPref(i)=mean(mean(behaviorprediction(flyindices{i},:))); nactivity(i,:)=mean(behaviorprediction(flyindices{i},:)); end linmodel=fitlm(nactivity,flyTruePref); myprediction=predict(linmodel,nactivity); figure plot(myprediction,flyTruePref,'o','Color',pncolor,'LineWidth',3) for i=1:flyNum hold on %text(myprediction(i)+0.01,flyTruePref(i),num2str(i),'FontSize',15) end text(0,0,['R^2 = ' num2str(linmodel.Rsquared.Adjusted)],'FontSize',15) xlabel('Predicted Preference') ylabel('Measured Preference') set(gca,'FontSize',15) box off linmodel figure plot(-nactivity,flyTruePref,'o','Color',pncolor,'LineWidth',3) xlabel('DM2-DC2 activity (% difference)') ylabel('Measured Preference') set(gca,'FontSize',15) box off