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Abstract 

Individual animals behave differently from each other. This variability is a component of personality and arises even 
when genetics and environment are held constant. Discovering the biological mechanisms underlying behavioral 
variability depends on efficiently measuring individual behavioral bias, a requirement that is facilitated by automat-
ed, high-throughput experiments. We compiled a large data set of individual locomotor behavior measures, acquired 
from over 183,000 fruit flies walking in Y-shaped mazes. With this data set we first conducted a “computational 
ethology natural history” study to quantify the distribution of individual behavioral biases with unprecedented preci-
sion and examine correlations between behavioral measures with high power. We discovered a slight, but highly 
significant, left-bias in spontaneous locomotor decision-making. We then used the data to evaluate standing hy-
potheses about biological mechanisms affecting behavioral variability, specifically: the neuromodulator serotonin 
and its precursor transporter, heterogametic sex, and temperature. We found a variety of significant effects associat-
ed with each of these mechanisms that were behavior-dependent. This indicates that the relationship between biolog-
ical mechanisms and behavioral variability may be highly context dependent. Going forward, automation of behav-
ioral experiments will likely be essential in teasing out the complex causality of individuality.  
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Introduction 

Individual animals exhibit idiosyncratic behavior, even when 
their genetics and rearing environment are held constant. This 
variability is termed intragenotypic variability (Stamps et al., 
2013) and likely arises in part due to stochastic effects during 
development (Vogt 2015; Honegger & de Bivort, 2018), which, 
in a quantitative genetic framework, are classified as 
microenvironmental plasticity (Morgante et al., 2015). 
Intragenotypic variability in animal behavior is likely a major 
component of animal personality, an ecologically and 
……………..

evolutionarily important dimension of variation (Freund et al., 
2013; Bierbach et a., 2017). A single genotype giving rise to a 
broad distribution of random phenotypes may constitute an 
adaptive evolutionary strategy, termed “bet-hedging,” to 
increase the probability that for any fluctuation in the 
environment, some individuals will be fit, increasing the odds 
that a lineage never goes extinct (Hopper, 1999). While bet-
hedging has strong theoretical foundations, in the context of 
animal behavior it has limited evidence (but see Kain et al., 
2015 and Akhund-Zade et al., 2021). A challenge in studying 
bet-hedging is that behavioral variability is difficult to measure;
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larger sample sizes are needed to precisely estimate the variance 
of a trait, compared to the mean. This is largely because the for-
mer requires sampling phenotypes in the tail of a distribution, 
which are rare by definition. 

Increasing behavioral assay throughput via automation is an ef-
fective way to attain the sample sizes needed to study variability. 
This can be achieved through miniaturization and parallelization 
of imaging platforms in a lab context (Kain et al., 2012; Pantoja 
et al., 2016; Churgin et al., 2017; Stern et al., 2017; Barlow et 
al., 2021). While the up-scaling of experiments is easiest with 
small, lab-adapted animals, such approaches do work with 
species beyond the common genetic models (Crall et al., 2015; 
Bierbach et al., 2017; Crall et al, 2018; Ulrich et al., 2018). 
Gains in data throughput can be achieved with the help of robots 
that automate animal handling (Alisch et al., 2018), move cam-
eras between arenas (Alisch et al., 2018; Crall et al., 2018) or 
track a single animal over long periods of time (Johnson et al., 
2020). Automation of analysis is also essential, and innovations 
in animal centroid tracking (Panadiero et al., 2021), body-part 
tracking using neural networks (Hausmann et al., 2021) and be-
havioral classification (Kabra et al., 2013; Berman et al., 2014; 
Todd et al., 2017) constitute a rich tool set for rapidly extracting 
behavioral measures from digital data sets. 

High-throughput, automated behavioral assays have been used to 
investigate the variability of Drosophila behavior (Steymans et 
al., 2021; Werkhoven et al., 2021; Mueller et al., 2021; Mollá-
Albaladejo & Juan Sánchez-Alcañiz 2021). The species’ deep 
genetic toolkit facilitates the study of proximate mechanisms 
controlling variability such as neurotransmitters (Kain et al., 
2012; Honegger & Smith et al., 2019), neural circuits (Buchanan 
et al., 2015; Honegger & Smith et al., 2019; Linneweber et al., 
2020; Skutt-Kakaria et al., 2019), genes (Kain et al., 2012; Ay-
roles et al., 2015; Wu et al., 2018), environmental variation 
(Akhund-Zade et al., 2019), and social effects (Alisch et al., 
2018; Versace et al., 2019). Of these studies, the three that have 
assayed the greatest number of individuals (Buchanan et al., 
2015, Ayroles et al., 2015 and Skutt-Kakaria, et al., 2019) all 

employed a common behavioral assay: spontaneous locomotion 
in Y-shaped mazes. As flies walk freely in these arenas, they 
make a left-vs-right choice every time they cross through the 
center of the maze. Individual flies make hundreds of such 
choices per hour. This yields a large data set per individual, 
which in combination with a high throughput of individuals, 
makes this assay particularly amenable to the study of variabili-
ty. Beyond the number of left-right choices made and their aver-
age handedness, the Y-maze assay also produces behavioral 
measures related to the higher-organization of turn sequences 
and their timing (Ayroles et al., 2015). 

Individual left-vs-right turning bias is correlated with clockwise-
vs-counterclockwise bias in open arenas (Buchanan et al., 2015) 
indicating that the behavioral measures in this assay are not en-
tirely geometry-dependent. Humans may exhibit a comparable 
form of locomotor bias in the curvature of their trajectories when 
trying to walk straight without visual feedback (Souman et al., 
2009). The left-right symmetry of this assay evokes the phe-
nomenon of fluctuating asymmetry, in which individual variation 
in the extent of morphological asymmetry is used as a measure 
of developmental stability (Van Valen, 1962; Debat et al., 2011). 
Indeed, both left-vs-right turn bias in Y-mazes and morphologi-
cal traits examined for fluctuating asymmetry tend to have aver-
age values (typically close to left-right symmetry) that are robust 
across genotypes and selection (Pelabon et al., 2005; Ayroles et 
al., 2015).

Here, we took advantage of the high precision and throughput of 
the Y-maze assay to characterize the distribution of individual 
behaviors and their variability along different experimental axes. 
We collected nearly all the data from Y-maze experiments con-
ducted by lab members since this assay was devised in 2010. In 
descriptive analyses, we characterized the distribution of indi-
vidual Y-maze behavioral measures, and their correlations, with 
unprecedented precision. In hypothesis-driven analyses, we ex-
amined the effects on variability of manipulations of serotoner-
gic signaling, the gene white (previously shown to affect photo-
tactic variability; Kain et al., 2012), sex, and temperature. On the 
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Figure 1 — Description of grand Y-maze data set — A) Visualization of 183,496 flies (each dot is a fly). B) Breakdown of flies into important 
metadata categories. Height of each color segment indicates the number of flies with that metadata value. Bars align to (A). 
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whole, these analyses reinforce the finding that genotype and the 
choice of behavioral measure itself have consistently large ef-
fects on measures of variability (Akhund-Zade et al., 2019), 
though some mechanistic manipulations can have large effects in 
a behavior-dependent fashion. 

Results 

We collected experimental records from hundreds of experi-
ments examining the Y-maze behavior of 183,496 individual 
flies (Figure 1). In total, these flies made 79.8M left-right choic-
es. Four behavioral measures were recorded for each fly (Ay-
roles et al., 2015): turn bias (percent of turns to the right), num-

ber of turns, and turn switchiness. The latter is a measure of the 
degree to which flies alternate between left and right turns, nor-
malized by their turn bias. A fly making exactly as many left 
(right) followed by right (left) turns as expected in a binomial 
model has a switchiness value of 1. Lower switchiness indicates 
fewer LR/RL turn sequences, and, conversely, longer streaks of 
L or R turns. The fourth measure, turn clumpiness, captures the 
non-uniformity of turn timing, i.e., the extent to which flies 
made choices in bursts. We changed the formula for the last 
measure midway through the data collection period (compare 
Buchanan et al., 2015 and Werkhoven et al., 2021), making this 
measure hard to compare across experiments; therefore we ex-
cluded it from further analysis. In addition to behavioral data, 
the record for each fly also included metadata about the experi-
mental circumstances, including (Table 1): the fly’s genotype, 
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Figure 2 — Estimation of statistics describing three Y-maze behavioral measures — A) Kernel density estimate of the distribution of turn bias 
across all flies in the data set. Grey interval is the 95% CI as estimated by bootstrap resampling. Orange line is the Gaussian distribution that best 
fits the data. B) Violin plot of estimation distributions of four statistical moments describing the distribution of turn bias. Each violin is a kernel 
density estimate of the distribution of each statistic’s value across bootstrap samples from 1000 replicates. C) Average bootstrap estimate of the 
mean, variance and subsequent 18 standardized moments of the distribution of turn bias, as a function of the size of the data set. Darkest line 
corresponds to the complete grand Y-maze data set, and lighter lines random subsets. Dotted line at |µ|/σ = 2 indicates the threshold for moment 
estimate significantly different from 0 at p = 0.05. D-F) As in (A-C) for number of turns as the behavioral measure. G-I) As in (A-C) for turn 
switchiness as the behavioral measure. Note log y-axes in (E,F,H,I). 
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experimental conditions, temperature during behavior, age of the 
fly, the experimenter who recorded the behavioral data, the ID# 
of the array of arenas (“tray”) in which it behaved, the ID# of the 
imaging box in which it behaved, the date, the number of arenas 
in its tray, the software used to record its behavior, the software 
used to produce its behavior measures, and its sex. The propor-
tion of all flies for five of these metadata categories are shown in 
Figure 1B. 

The size of our data sets allows some of the most precise estima-
tion of behavioral distributions across individuals to-date. We 
computed kernel density estimates of the distributions of turn 
bias, number of turns and turn switchiness (Figure 2A, D, G). 
The distributions of all measures are essentially unimodal, with 
the distribution of handedness appearing roughly Gaussian (Fig-
ure 2A). However, it deviates from that distribution in a number 
of ways: it is denser at its mode and in tails corresponding to 
strong turning biases around 0.1 and 0.9. This is reflected in a 
kurtosis greater than three (Figure 2B; see below). The empirical 
distribution of handedness is technically trimodal, with small 
peaks corresponding to flies with biases very close to 0 and 1. 
Most flies in these peaks performed fewer than 50 turns, indicat-
ing that these peaks may be the consequence of undersampling 
within these individuals.

To assess the precision of measures quantifying these distribu-
tions we looked at the distribution of estimates (under bootstrap-
ping) of the mean, standard deviation, skewness and kurtosis of 
the behavioral distributions (Figure 2B, E, H). These were gen-
erally quite narrow, indicating precise estimation, and generally 
broader for the higher-order statistics. This was expected as the 
higher-order statistics have exponential terms that render them 
more sensitive to sampling error. But their precision did not al-
ways decrease monotonically (Figure 2H). To extend this analy-
sis, we computed the standardized moments of each distribution, 
up to the 20th moment, for each behavioral measure (Figure 2C, 
F, I). To our surprise, the data provided robust estimates even of 
the 20th moment of turn bias and turn switchiness. This was true 

even in 10-fold subsamples of the turn switchiness data, but was 
not the case for number of turns (Figure 2F) or odd moments of 
the turn bias data (Figure 2C). This indicates that the reliability 
of estimates of high-order distribution statistics depends on the 
underlying distribution, not just the sample size. 

In our studies of turn bias in Y-mazes (Buchanan et al., 2015; 
Ayroles et al., 2015; Akhund-Zade et al., 2019; Werkhoven et al., 
2021), we operated under the assumption that the mean turn bias 
was 0.5 in all genotypes. For example, this assumption was the 
basis of the decision to not model the interaction of genetic vari-
ation for the mean and variability of turn bias in Ayroles et al. 
2015. On close examination of this measure in our new data set, 
we found evidence that the mean turn bias may not be 0.5 (Fig-
ure 3). The mean of turn bias in the grand data set was 0.496 
(Figure 3A), indicating a slight left bias to Y-maze turn choices. 
This slight left bias was also present in the distribution of geno-
type, sex and experimenter (Figure 3B-D) mean turn biases, 
suggesting that the apparent left bias in the grand mean is not 
likely attributable to imbalance among the metadata covariates. 
Indeed, a linear model with 11 meta variables as predictors (all 
but date, which renders the model rank deficient) and 636 coef-
ficients has a turn bias intercept of 0.485 (SE 0.0099). Moreover, 
47/569 genotypes have significant effects in a linear model 
where genotype is the sole predictor of turn bias (Figure 3E). 
This is a significant enrichment, and supports the conclusion that 
the average turn bias is under biological control. 

Since our behavioral data was multidimensional (turn bias, num-
ber of turns and turn switchiness were measured for each fly), 
we were also able to investigate the joint distributions and corre-
lations of these measures. We first tested whether there might be 
a correlation between turn bias and number of turns, specifically 
a negative correlation arising from higher sampling error in es-
timating turn bias for flies making fewer turns. Counter to this 
prediction, we observed a slight positive correlation (r = 0.036; p 
= 4*10-52). We did, however, notice the effects of the discreteness 
of number of turns as a measure, and the resulting limited values 
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Figure 3 — Mean turn bias appears slightly asymmetrical — A) Violin plot of estimate distribution for the mean of turn bias across the grand data 
set, exhibiting an apparent slight left-bias of 49.6%. Violin is a kernel density estimate (KDE) of this statistic from 1000 bootstrap replicates. B) 
Mean turn bias for each genotype (points). Violin is the KDE of genotype means. Point color value indicates the number of flies recorded for that 
genotype. C) As in (B), but with flies grouped by sex experimental condition. The three points correspond, from top to bottom, to males only, 
females only and mixed sex. D) As in (B), but with flies grouped by experimenter. E) Histogram of p-values from a linear model with each genotype 
as a predictor. Brown bars represent effects significant at p < 0.05. Dotted line indicates the expected distribution under the null model.  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that turn bias can take on, as a fractal-like (Trifinov et al., 2011) 
structure in the scatter plot of absolute turn bias vs. number of 
turns (Figure 4A).

Next, we examined the joint distribution of turn switchiness and 
number of turns (Figure 4B). This 2-dimensional distribution 
had two conspicuous features: an uncorrelated mode containing 
the vast majority of the flies, and a smaller mode exhibiting a 
negative linear relationship between turn switchiness and num-
ber of turns. The flies in this second mode were predominantly 
reared on potato flake media (which was sometimes supple-
mented with drugs targeting the neurotransmitter serotonin; Di-
erick & Greenspan, 2007; Kain et al., 2012; Krams et al., 2021). 
Notably, being reared on potato food was not a guarantee that a 
fly fell in this part of the distribution; the vast majority of flies in 
such rearing conditions fell in the predominant uncorrelated 
mode of the joint distribution along with flies fed on standard 
cornmeal-dextrose media.  

Finally, we used the Y-maze data set to revisit several previously 
examined hypotheses about the proximate mechanisms regulat-
ing behavioral variability. We first asked whether the distribution 
of measures of turn bias variability across genotypes was consis-
tent between the distribution seen in Ayroles et al., 2015 and the 
other genotypes present in our data set. The lines examined in 
that paper come from the Drosophila Genome Reference Panel 
(DGRP; Mackay et al., 2012), a collection of inbred lines estab-
lished from the natural population of flies in Raleigh, NC USA. 
The remaining 339 genotypes in our data set come from a vari-
ety of sources, mostly lab stocks, and include 165 lines express-
ing the transgenic driver Gal4 (Brand & Perrimon, 1988) in 
neural circuit elements (Jennett et al., 2012). Thus, these geno-
types do not represent a sample from a natural population. The 
distribution of their genotype-wise variability in turn bias was 
largely similar to that observed in DGRP lines (Figure 5A), with 
genotypes exhibiting coefficients of variation in handedness 
ranging from less than 0.2 to more than 0.4.

Neuromodulation may have a special role in the control of be-
havioral variability (Maloney 2021), e.g., phototaxis (Kain et al., 
2012; Krams et al., 2021) and olfactory preference (Honegger & 
Smith, 2019). We conducted experiments to see if serotonin 
modulation controls variability of locomotor behaviors in the Y-
maze. Specifically, we measured the variability of turn bias, 
number of turns and turn switchiness in DGRP lines which were 

treated with alpha-MW (a serotonin synthesis inhibitor), 5-HTP 
(a biosynthetic precursor of serotonin) (Dierick & Greenspan, 
2007) or their respective control media. These treatments gener-
ally had small effects on behavioral variability across genotypes 
(ranging from a -10% to a 7% increase), with the exception of 
the effect of 5-HTP on variability in the number turns, which, in 
two versions of the experiment increased variability by 16% or 
25% (Figure 5B). Overall, these results imply that although sero-
tonin levels can affect the variability of turn number, there is not 
a strong effect that is consistent across behaviors.

We previously determined that the effect of serotonin on photo-
tactic variability was dependent on the gene white, which en-
codes a transmembrane transporter that imports the serotonin 
precursor tryptophan into neurons. We scored the flies in our Y-
maze data set for their white genotype, which could range from 
wild type to homozygous null, with intermediate conditions of 
(likely) partial rescue by the expression of the “mini-white” al-
lele at non-endogenous transgenic insertion sites (Klemenz et al., 
1987). Lines with homozygous null alleles at the endogenous 
white locus exhibited higher variability in number of turns, with 
the exception of lines that were also heterozygous for mini-white 
at a transgenic locus. The molecular function of White suggests 
that its disruption should produce a behavioral phenotype like 
serotonin synthesis inhibition, which had no effect in our phar-
macological manipulations (whereas feeding flies serotonin pre-
cursor increased variability, like white disruption). white genetic 
disruption was associated with small reductions in variability in 
turn bias and turn switchiness (Figure 5C), consistent with the 
small decreases seen in the aMW pharmacological experiments 
(Figure 4B). Overall, we found some agreement in the effects of 
serotonin pharmacological experiments and white disruption, but 
not perfect agreement, suggestive of behavior-dependent com-
plexity in the relationship between white, serotonin, and variabil-
ity. 

It has been hypothesized that individuals of the heterogametic 
sex will exhibit greater trait variability due to noise in gene 
compensation (James, 1973), though a recent meta analysis 
found no significant sex-bias in the variances of 218 mouse traits 
(Zajitschek et al., 2020). We fit linear models to Levene-trans-
formed turn bias, number of turns, and turn switchiness data 
with genotype and sex as predictors to test for the effect of sex 
on behavioral variability. Males had variability that was -6.8% 
(p<0.001), 7.5% (p<0.001) and 1.8% (n.s.) greater than that of 
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Figure 4 — Correlations between behavior 
measures — A) Turn bias magnitude vs. 
number of turns. Each point is a fly. 
Fractal-like pattern at left is a consequence 
of the limited turn bias values that are 
possible for a given discrete number of 
turns. r = 0.0357, p < 10-50. B) Turn 
switchiness vs. turn bias magnitude. Each 
point is a fly and colored on a scale 
depending on whether the flies were reared 
on cornmeal-dextrose agar media (black-
cyan) or F4-24 potato flake media (black-
cyan). Point color value indicates sample 
size, with dark flies making fewer turns. 
Curvilinear features are a consequence of 
limited switchiness values possible for a 
given turn bias magnitude, a constraint that 
arises most obviously in flies making fewer 
turns (dark points).
 �
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females in turn bias, number of turns, and turn switchiness re-
spectively. 

Lastly, we examined the effect of temperature during behavioral 
testing, with the hypothesis that flies would exhibit higher vari-
ability at high temperature (32-33°C) than at room temperature 
(22-23°C). This would be consistent with a mechanism in which 
heat pushes neural circuits out of the range in which physiologi-
cal buffering keeps circuits operating similarly despite latent 
developmental and genetic variability (Tang et al., 2012; Rinberg 
et al., 2013). We examined this specifically for genotypes that 
had paired experiments at low and high temperature, and did not 
express any temperature-sensitive effectors. We found that high 

temperature had no effect on turn bias variability, but significant-
ly decreased number of turns variability and turn switchiness 
variability by 37% and 32% respectively (Figure 5D). Tempera-
ture does affect the mean number of turns, typically increasing it 
by making flies more active. Our analysis controlled for this by 
assessing mean-normalized variability (the coefficient of varia-
tion: µ/σ). Overall, our analyses of the effects of potential prox-
imate mechanisms controlling variability revealed a complex 
picture with (often small) effects of serotonergic regulation, 
white genotype, sex and temperature. For all of these manipula-
tions, the direction of effect on variability was behavior-depen-
dent.
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Figure 5 — Factors potentially affecting behavioral variability — A) Variability (measured as the coefficient of variation) of turn bias for DGRP 
genotypes (blue) and non-DGRP genotypes (black). Violins are the KDE of genotype variabilities. B) Variability of turn bias (left), number of turns 
(middle) and turn switchiness (right) for DGRP genotypes in 6 pharmacological experimental conditions targeting serotonin. Each point is a 
genotype in a particular experimental condition. Lines pair genotypes across a drug medium and its associated control medium. Numbers at top 
indicate the effect size from control to drug treatment. Bold effect sizes are statistically significant and colored by the direction of their effect (red = 
lower variability; cyan = higher). *: p < 0.05; **: p < 0.01; ***: p < 0.001. C) Violin plot of estimation distributions for the variability of turn bias 
(magenta), number of turns (gold) and turn switchiness (turquoise) vs. genotype of the white gene. + indicates wild type, +mw.hs the “mini-white” 
allele typically used to mark a transgenic insertion, and - a null allele (typically w1118; Hazelrigg et al., 1984). white genotypes are roughly ranked in 
order of expression disruption. The site of w+mw.hs insertion varied by line; the semi-colon notation in the panel label indicates that this site might be 
on a different chromosome than the endogenous w locus. D) Variability of turn bias (left), number of turns (middle) and turn switchiness (right) for 
genotypes tested at 23°C and 33°C. Lines pair genotypes across temperature conditions. Effect sizes and significances as in (B).  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Discussion 

We collected Y-maze data collected by lab members back to the 
origination of this assay 11 years ago. This large data set com-
prised the behavioral measures of over 180,000 individual flies 
that made a total of nearly 80 million left-right choices. With it, 
we were able to estimate the distribution of three measures of 
individual behavior with unprecedented precision, even out to 
the 20th standardized statistical moment (Figure 2). In explorato-
ry analyses, we noticed two surprising patterns: 1) a discrete 
change in the relationship between turn bias magnitude and turn 
switchiness in a subset of animals that had been reared on potato 
flake media used for pharmacological experiments, and 2) that 
flies appear to have a slight left bias in their Y-maze choices. 
Finally, we used our data set to test several hypotheses pertain-
ing to proximate control of variability in behavior, finding sig-
nificant behavior-dependent effects of drugs targeting serotonin, 
mutation of the white gene (which encodes a channel that im-
ports serotonin precursor), sex and temperature. Compared to the 
effects of genotype and the choice of behavior measure, the ef-
fects of these manipulations were generally small and context-
dependent, underscoring the complexity of relationships between 
axes of biological regulation and behavioral variability.

Admittedly, a motivation for this study was the desire to explore 
a very large data set reflecting the work over many years of 
many lab colleagues. In that spirit, it is fun to think about how 
throughput might be expanded another order of magnitude in the 
coming years. One possibility is robotic fly-handling (Alisch et 
al., 2018), which has yet to be deployed at scale in support of a 
large screen. Another possibility is tracking flies using capacitive 
sensors (Itskov et al., 2014) instead of with cameras. This would 
remove the need for long optical axes that force our behavior 
boxes to be tall, allowing a dense, vertical packing of arenas 
within a minimal bench footprint. 

While increasing throughput through further automation is an 
appealing possibility, and perhaps essential for certain classes of 
experiments (like experimental selection for variability, which 
would require testing thousands of individual flies per genera-
tion for a year or more), it is not without conceptual conse-
quences. One of these is how to assess small effects that are ex-
tremely statistically significant due to large sample sizes. Two 
examples from this study are the apparent slight left turn bias 
(Figure 3) and the significant positive correlation between turn 
bias magnitude and number of turns (FIgure 4A). A turn bias of 
0.496 compared to an expected value of 0.5 is indeed a small 
discrepancy, but it might nevertheless be biologically significant 
given the consistent failure of artificial selection experiments to 
evolve directional asymmetry in a variety of fly morphological 
characters (Carter et al., 2009). Another aspect of working with 
large data sets is that sampling error is likely to be small com-
pared to inadvertent biases in the data (Meng 2018; see Bradley 
et al., 2021 for an important example). I.e., accuracy is unlikely 
to improve with further observations, but instead with the harder 
work of identifying systematic miscalibration, misunderstand-
ings of what is being measured, or structure in the data leading 
to effects like Simpson’s paradox. A way forward among these 
challenges may be to conduct experiments and analyses under a 
variety of biological conditions, increasing the odds that infer-
ences generalize across contexts (Voelkl et al., 2020), an ap-

proach that would also be boosted by throughput and au-
tomation.

With caveats of big data in mind, we want to consider possible 
errors that might explain the apparent slight (but highly signifi-
cant) left mean turn bias. All experimenters conducting these 
experiments are right-handed. It is formally possible that chiral 
manipulation during the experimental set-up imparted a slight 
chirality to turning in the Y-maze, though we cannot think of a 
convincing mechanism by which this would happen. We can also 
not think of mechanisms by which small, inevitable asymmetries 
in our behavioral rigs would impart a consistent left bias to be-
haviors measured across several generations of rigs and tracking 
software versions. Arguments in favor of the apparent left turn 
bias being real are previous reports of small mean asymmetries 
in wing size and shape (Klingenberg et al., 1998), possible indi-
rect effects of conspicuously asymmetrical anatomical features 
like the gut, or the contribution of the Asymmetric Body, a small 
neuropil abutting the premotor Central Complex that is consis-
tently larger in the right hemisphere (Wolff & Rubin, 2018). 

While we found that our data set allowed the precise estimation 
of the distribution of individual behavioral scores, we also saw 
that the stability of higher-order moment estimates depended 
strongly on the behavioral distribution in question (Figure 2). 
Thus, there is not necessarily a simple rule for how large a sam-
ple should be to estimate higher order statistics of its distribu-
tion. In the joint distribution of turn bias magnitude and turn 
switchiness, we observed two distinct modes between these 
measures, and, to our surprise, found that most of the points fall-
ing in the rarer mode came from experiments where flies were 
reared on potato flake food (Figure 4B). These flies comprised a 
relatively small subset of multiple experiments, in both control 
and drug conditions, from many genotypes. Thus, rearing on 
potato media is the best explanatory variable we could find for 
this mode of variation. We previously observed that acutely 
switching flies from cornmeal-dextrose media to potato media 
increased their variability in odor preference (Honegger & 
Smith, 2018). Perhaps this perturbation also alters the correlation 
structure, in a subset of flies, between turn bias and turn switchi-
ness. Since these measures may relate to the paths animals take 
through natural environments, a food-dependent change in turn-
ing might alter foraging statistics, perhaps adaptively. 

Finally, we used this large data set to examine hypotheses about 
proximate mechanisms controlling variability. We found many 
significant effects, such as 5-HTP or disruption of the white lo-
cus increasing variability in number of turns, disruption of white 
decreasing variability of turn bias and turn switchiness, males 
exhibiting slightly lower variability in turn bias but higher vari-
ability in number of turns, and conducting experiments at high 
temperatures lowering variability in number of turns and turn 
switchiness (Figure 5). We expected temperature to increase 
variability per results in the crab stomatogastric ganglion (Tang 
et al., 2012; Rinberg et al., 2013), but our high temperature ex-
periments did not push the flies to their critical thermal limits 
(Kellermann et al., 2012). Thus, perhaps even higher tempera-
ture manipulations might result in consistent increases in vari-
ability across behaviors. Our variability results indicate a com-
plex, behavior-dependent relationship between many biological 
mechanisms and behavioral variability, which likely parallels the 
complexity of mechanisms controlling the means of behavioral 
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traits. Experimental automation, and the high throughput it per-
mits, made these and other findings on behavioral individuality 
feasible. 

Methods 

Data and analysis code 

All behavioral measures and metadata values, along with the 
code underlying analyses are available at http://lab.debivort.org/
precise-quantification-of-behavioral-individuality/ and https://
zenodo.org/record/5784716.  

Fly handling  
 
Unless otherwise indicated, the default culture conditions were 
cornmeal-dextrose media and incubation on the bench or in in-
cubators at 21°C-25°C with 12h/12h light cycles. Flies were 
generally anesthetized under CO2 to load them into y-mazes, 
though a small portion of flies were anesthetized by ice or 
loaded without anesthetization. Flies were given a period of 
15-30 minutes of acclimation to the Y-mazes after loading before 
data collection began. 

Pharmacological experiments

Experimental flies receiving drug treatments were reared from 
egg-laying in drug-supplemented media (or control media). Drug 
media are indicated in the expCond metadata variable (see Table 
1). To supplement media, drug was added to water, which was 
then added to dry potato flake media, or drug was added to agar 
media liquified momentarily in a microwave oven. 15mg ascor-
bic acid was added to each 60mL media vial as an anti-oxidant 
in 5-HTP treated groups and their controls. The two 5-HTP ex-
periments presented in Figure 5 were conducted on potato media 
and cornmeal-dextrose media (#2) but are otherwise identical. To 
control for the average dose of experimental flies, prior to drug 
experiments we measured the average number of progeny to 
eclose following a 24h parental egg-laying session, on cornmeal-
dextrose media, for each of the DGRP lines. The number of 
parental animals for drug experiments was adjusted proportion-
ally, line-by-line, to target an identical number of progeny on the 
drug media for each line. 

Behavioral assays

Data was collected in Y-shaped mazes arrayed in trays 
(Buchanan et al., 2015; Alisch et al., 2018; Werkhoven et al., 
2019) and imaged in enclosed behavioral boxes (Werkhoven et 
al., 2019) under diffuse white LED illumination typically pro-
vided by custom LED boards (Knema LLC, Shreveport, LA 
USA). The default assay length was 2h. Fly centroids were com-
puted in real time using background subtraction implemented in 
a variety of custom software environments coded in LabView or 
MATLAB. The centroid tracking software used in recent exper-
iments was MARGO (Werkhoven et al., 2019). 

Statistics and analysis

Analysis was conducted in MATLAB 2017b (The Mathworks, 
Natick, MA USA) using custom functions. 95% confidence in-
tervals estimated by bootstrapping were estimated as +/- twice 
the standard deviation of values across bootstrap replicates. For 
the analysis of the effect of temperature on variability (Figure 
5D), the 23°C groups include experiments conducted at 22°C 
and the 33°C groups include experiments conducted at 32°C. 
Genotypes were only included in the temperature analysis if they 
had data recorded at both temperatures and did not express any 
thermogenetic constructs. Thus, most genotypes in this analysis 
were controls of thermogenetic experiments or wild type lines. 
Significance in the serotonin pharmacological and temperature 
experiments was assessed by paired t-tests, and all reported p-
values are nominal. 
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Table 1 — Y-maze data set variables. 

data variable name notes
flyID number linking this fly’s data to other digital records
handedness turn bias behavioral measure
numTurns number of turns behavioral measure
switchiness turn switchiness behavioral measure
lev_handedness Levene-transformed turn bias, for linear modeling of variability in turn bias
lev_numTurns Levene-transformed number of turns, for linear modeling of variability in number of turns
lev_switchiness Levene-transformed turn switchiness, for linear modeling of variability in turn switchiness
genotype genotype of fly
expCond experimental condition
expTemp

5htpagar
5htpagar25
5htpagar50
5htpnormal
5htppotato10
5htppotato25
5htppotato50
aMWnormal
agar
amwagar
amwpotato10
amwpotato20
amwpotato25
amwpotato50
ctrlaanormal
ctrlaapotato
d10gal80heatshock
d14gal80heatshock
d1gal80heatshock
d3gal80heatshock
d4gal80heatshock
d5gal80heatshock
d6gal80heatshock
d7gal80heatshock
d8gal80heatshock
d9gal80heatshock
darkreared
gal80heatshock
grownat18
grownat20
grownat23
grownat25
grownat30
heritability
intenseenrichment
irtest
mildenrichment
normal
potato
ru486
ru486control
single

temperature during behavioral experiment (°C) 
     flies reared on agar media supplemented with 10mM 5-HTP 
     flies reared on agar media supplemented with 25mM 5-HTP 
     flies reared on agar media supplemented with 50mM 5-HTP  
     flies reared on cornmeal-dextrose media supplemented with 10mM 5-HTP 
     flies reared on potato media supplemented with 10mM 5-HTP  
     flies reared on potato media supplemented with 25mM 5-HTP  
     flies reared on potato media supplemented with 50mM 5-HTP  
     flies reared on cornmeal-dextrose media supplemented with 10mM aMW  
     flies reared on control agar media  
     flies reared on control agar media supplemented with 15mg/mL ascorbic acid  
     flies reared on potato media supplemented with 10mM aMW  
     flies reared on potato media supplemented with 20mM aMW 
     flies reared on potato media supplemented with 25mM aMW 
     flies reared on potato media supplemented with 50mM aMW  
     flies reared on control potato media  
     flies reared on control potato media supplemented with 15mg/mL ascorbic acid  
     flies subjected to heat-shock at day 10 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 14 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 1 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 3 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 4 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 5 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 6 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 7 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 8 of development (Ayroles et al., 2015)  
     flies subjected to heat-shock at day 9 of development (Ayroles et al., 2015)  
     flies reared in darkness  
     flies subjected to heat-shock post eclosion, prior to behavioral assay  
     flies reared in incubators at 18°C  
     flies reared in incubators at 20°C 
     flies reared in incubators at 23°C 
     flies reared in incubators at 25°C 
     flies reared in incubators at 30°C  
     flies are the progeny of single parents selected for turn biases (Buchanan et al., 2015)  
     flies reared in high intensity enrichment population cage (Akhund-Zade et al., 2019)  
     fly behavior was measured using infrared rather than white illumination  
     flies reared in mild intensity enrichment vials (Akhund-Zade et al., 2019)  
     standard rearing conditions  
     flies reared on potato media  
     flies reared on media supplemented with ru486  
     flies reared on ru486 control media  
     flies reared in single housing

age middle of range of ages post-eclosion of fly in that experimental group. E.g., age = 6 typically reflects experimental 
flies ranging from 4-8 days old

experimenterID name of experimenter who collected the behavioral data
trayID identifying # of the arena array tray in which the fly behaved
boxID identifying # of the imaging box in which the fly behaved
acquisition software used to collect that fly’s behavioral data
analysis software used to compute that fly’s behavioral measures
sex fly’s sex. “both” indicates that both males and females were used in this experimental group, in unspecified 

proportion
eyeColor state of the white genetic locus. See Fig 5. + indicates wild type, - null, and m mini-white alleles


