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Abstract 

Behavior varies even among genetically identical animals raised in the same environment1–10. However, little is 
known about the circuit or anatomical underpinnings of this individuality11,12. Drosophila olfaction is an ideal sys-
tem for discovering the origins of behavioral individuality among genetically identical individuals. The fly olfactory 
circuit is well-characterized13–16,17–19 and stereotyped15, yet stable idiosyncrasies in odor preference4, neural coding4, 
and neural wiring20,21 are present and may be relevant to behavior. Using paired behavior and two-photon imaging 
measurements, we show that individual odor preferences in odor-vs-air and odor-vs-odor assays are predicted by 
idiosyncratic calcium dynamics in Olfactory Receptor Neurons (ORNs) and Projection Neurons (PNs), respectively. 
This suggests that circuit variation at the sensory periphery determines individual odor preferences. Furthermore, 
paired behavior and immunohistochemistry measurements reveal that variation in ORN presynaptic density also 
predicts odor-vs-odor preference. This point in the olfactory circuit appears to be a locus of individuality where mi-
croscale variation gives rise to idiosyncratic behavior. To unify these results, we constructed a leaky-integrate-and-
fire model of 3,062 neurons in the antennal lobe. In these simulations, stochastic fluctuations at the glomerular level, 
like those observed in our ORN immunohistochemistry, produce variation in PN calcium responses with the same 
structure as we observed experimentally, the very structure that predicts idiosyncratic behavior. Thus, our results 
demonstrate how minute physiological and structural variations in a neural circuit may produce individual behavior, 
even when genetics and environment are held constant. 

Keywords: individuality, neural circuits, sensory processing, olfaction, behavioral preference, variation, antennal 
lobe, simulated connectome, calcium imaging, expansion imaging 
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Main Text 

Individuals respond differently to identical sensory stimulation. 
We hypothesize that as sensory cues are encoded and 
transformed to produce motor outputs, their representation in 
the nervous system will become increasingly idiosyncratic and 
predictive of individual behavioral responses. We refer to the 
….

sites at which this idiosyncrasy emerges as “loci of 
individuality.” To find these loci in the olfactory circuit (Fig 
1a), we measured odor preferences and neural responses4 in the 
same individuals, and asked whether the latter predicted the 
former (Fig 1b-d). Focusing on behavioral variation within a 
genotype, we used isogenic animals expressing the fluorescent 
calcium reporter GCamp6m22 in either of the two most 
…………
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Figure 1: Idiosyncratic calcium dynamics predict individual odor preferences (a) Olfactory circuit schematic. Olfactory receptor neurons 
(ORNs, peach outline) and projection neurons (PNs, plum outline) are comprised of ~51 classes corresponding to odor receptor response channels. 
ORNs of the same class (gray shading) sense odors in the antennae and synapse together on dendrites of PNs of the same class in ball-shaped 
structures called glomeruli located in the antennal lobe (AL). Local neurons (LNs, green outline) mediate interglomerular cross-talk and presynaptic 
inhibition, amongst other roles73,74. Odor signals are normalized and whitened in the AL before being sent to the mushroom body and lateral horn 
for further processing. Schematic adapted from4. (b) Experiment outline. (c) Odor preference behavior tracking setup (reproduced from4) and 
example individual fly ethograms. OCT (green backdrop) and MCH (magenta backdrop) were presented for 3 minutes. (d) Head-fixed 2-photon 
calcium imaging and odor delivery setup (reproduced from4). (e) Orco and GH146 driver expression profiles (left) and example segmentation masks 
(right) extracted from 2-photon calcium images for a single fly expressing Orco>GCaMP6m (top, expressed in a subset of all ORN classes) or 
GH146>Gcamp6m (bottom, expressed in a subset of all PN classes). (f) Time-dependent Δf/f for glomerular odor responses in ORNs (peach) and 
PNs (plum) averaged across all individuals: DC2 to OCT (upper left), DM2 to OCT (upper right), DC2 to MCH (lower left), and DM2 to OCT 
(lower right). Shaded error bars represent S.E.M. (g) Peak Δf/f for each glomerulus-odor pair averaged across all flies. (h) Individual neural 
responses measured in ORNs (left) or PNs (right) for 50 flies each. Columns represent the average of up to 4 odor responses from a single fly. Each 
row represents one glomerulus-odor response pair. Odors are the same as in panel (g). (i) Principal component analysis of individual neural … 
ooooo
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peripheral neural subpopulations of the Drosophila olfactory 
circuit, ORNs or PNs (Fig 1e). We performed head-fixed 2-pho-
ton calcium imaging after measuring odor preference in an un-
tethered assay4 (Fig 1b-d, Fig S1a). Importantly, individual odor 
preferences are stable over timescales longer than this experi-
ment (Fig S1b). Individual identity was maintained between 
behavior and imaging experiments by housing flies singly in 96-
well culture plates23. 

We measured volumetric calcium responses in the antennal lobe 
(AL), the site at which ORNs synapse onto PNs in ~50 discrete 
microcircuits called glomeruli (Fig 1a)19,24. Flies were stimulated 
with a panel of 12 odors plus air (Fig 1d, Figs S2,3) and we used 
k-means clustering to automatically segment the voxels of 5 
glomeruli from the resulting 4-D calcium image stacks (Fig 1e, 
Fig S4, Methods)19. We found that both ORN and PN odor re-
sponses were roughly stereotyped across individuals (Fig 1g,h), 
but also idiosyncratic as expected4. Responses in PNs appeared 
to be more idiosyncratic than ORNs (Fig 1j). We quantified this 
by training a logistic linear classifier to decode fly identity from 
glomerular responses. The classifier always attained a higher 
accuracy when trained on PN than ORN responses (Supplemen-
tary Figure 5a). While the responses of single ORNs are known 
to vary more than those of single PNs17, our recordings represent 
the total response of all ORNs or PNs in a glomerulus. This 
might explain our observation that ORNs exhibited less idio-
syncrasy than PNs. We also found that PN responses were more 
variable within flies, as measured across the left and right hemi-
sphere ALs, compared to ORN responses (Fig S5c). Higher idio-
syncrasy in PNs is consistent with the hypothesis that odor rep-
resentations become more idiosyncratic farther from the sensory 
periphery. 

Next we analyzed the relationship of idiosyncratic coding to 
odor preference, by asking in which neurons (if any) did calcium 
responses predict individual preferences of flies choosing be-
tween air and an aversive odor (3-octanol, OCT; Fig S1b,c; 
Movie 1). Because we could potentially predict preference (a 
single value) using numerous glomerular-odor predictors, and 
had a limited number of observations (dozens), we used dimen-
sional reduction to make parsimonious predictions. We comput-
ed the principal components (PCs) of the glomerulus-odor re-
sponses (in either ORNs or PNs) across individuals (Fig 1g-i, 
Fig S5-7). Using each of the first 5 PCs of PN calcium responses 
to linearly predict individual behavior, we found that PC 1 ex-
plained 16% of preference variance in a training set of 18 flies 
(Fig 1k,l). This PC 1-based model explained 10% of preference 
variance when evaluated on data from test flies (n=35) acquired 
after fitting the model (Fig 1m). Moreover, we found that PC 1 

of ORN neural activity explained 23% of preference variance 
(Fig 1k, n). Our interpretation is that ORN responses are idio-
syncratic and predict individual odor-vs-air preference, and that 
these idiosyncrasies are transmitted to PNs, where they remain 
predictive of behavioral responses.

How should we interpret PC1 of ORN responses predicting 23% 
of the variance of odor preference? This value will fall short of 
100% through a combination of two factors: 1) ORN responses 
not having a linear relationship to behavior, and 2) noise in the 
measurement of ORN responses and behavior fundamentally 
capping the prediction performance. To disentangle these effects, 
and estimate the extent to which the model captured meaningful 
biological signal, we performed a statistical analysis (Fig S8) 
that factored out estimated error in measuring behavior (Fig S1b-
e) from the model performance. This analysis implies that our 
model predicting odor-vs-air behavior from PC1 of ORN calci-
um responses (nominal R2=0.23) explains ~80% of the biologi-
cal signal between these measures. This makes intuitive sense 
because the raw model R2 (0.23) is close to the behavior re-
peatability R2 (0.27), an upper-limit (Fig S1b). In contrast, the 
model predicting odor-vs-air behavior from PC1 of PN calcium 
responses explains ~50% of the biological signal (Fig S9a). 

Variation in the sensory periphery has been previously implicat-
ed as a driver of behavioral variation 25,26, but we wondered 
whether ORNs would be a locus of individuality for a behavior 
requiring the comparison of two odors (rather than just the sen-
sation of a single odor). So we next determined if idiosyncratic 
calcium responses (in ORNs or PNs) could predict individual 
preferences in an odor-vs-odor choice (Fig S1d,e; 4; Movie 2), 
specifically between one aversive monomolecular odorant 
(OCT) and another (4-methylcyclohexanol, MCH). As before, 
we assessed if any of the first 5 PCs of PN calcium responses 
was a linear predictor of individual odor-vs-odor preferences. In 
this case, we found that PC 2 predicted 15% of preference vari-
ance in a training set of 47 flies (Fig 1o-p). This PC 2-based 
model explained 26% of preference variance when evaluated on 
test measurements acquired after fitting the model (n=22 flies) 
(Fig 1q). We infer that this performance corresponds to explain-
ing ~80% of the biological signal between PN calcium responses 
and odor-vs-odor behavior (Fig S9b).

In contrast, we found that no PCs of ORN neural activity could 
linearly predict odor preference beyond the level of shuffled 
controls (n=35 flies) (Fig 1o,r; Fig S9b). The best ORN PC 
model only predicted odor-vs-odor behavior with a nominal R2 
of 0.03 (~5% of biological signal). As another check that ORN 
responses were not predictive of odor-vs-odor behavior, we pro-
jected the ORN data onto PC 2 of PN responses (the successful 
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Figure 1 caption (continued): … responses. Fraction of variance explained versus principal component number (left). Trial 1 and trial 2 of ORN 
(middle) and PN (right) responses for 20 individuals (unique colors) embedded in PC 1-2 space. Note the variance explained by each PC is different 
in the case of ORN and PN responses. (j) Euclidean distances between glomerulus-odor responses within and across flies measured in ORNs (n=65 
flies) and PNs (n=122 flies). Distances calculated without PCA compression. Points represent the median value, boxes represent the interquartile 
range, and whiskers the range of the data. (k) Bootstrapped R2 of OCT-AIR preference prediction from each of the first 5 principal components of 
neural activity measured in PNs (top, training set) or ORNs (bottom, all data). (l) Measured OCT-AIR preference versus preference predicted from 
PC 1 of PN activity in a training set (n=18 flies). (m) Measured OCT-AIR preference versus preference predicted from PC 1 on PN activity in a test 
set (n=35 flies) evaluated on a model trained on data from panel (l). (n) Measured OCT-AIR preference versus preference predicted from PC 1 of 
ORN activity (n=30 flies). (o) Bootstrapped R2 of OCT-MCH preference prediction from each of the first 5 principal components of neural activity 
measured in PNs (top, training set) or ORNs (bottom, all data). (p) Measured OCT-MCH preference versus preference predicted from PC 2 of PN 
activity in a training set (n=47 flies). (q) Measured OCT-MCH preference versus preference predicted from PC 2 on PN activity in a test set (n=22 
flies) evaluated on a model trained on data from panel (p). (r) Measured OCT-MCH preference versus preference predicted from PC 1 of ORN 
activity (n=35 flies).  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model). As expected, this did not predict odor-vs-odor behavior 
(R2=0.06). Therefore, whereas idiosyncratic ORN responses 
(and PN responses) were predictive of odor-vs-air preferences, 
only PN responses were predictive of odor-vs-odor preferences.

We next sought an intuitive understanding of the models linking 
calcium responses and odor preference. We examined the load-
ings of the ORN and PN PCs and observed that variation across 
individuals was correlated at the level of glomeruli much more 
strongly than odorant (Figs S6,7). This suggests that stochastic 
variation in the olfactory circuit results in individual-level fluc-
tuations in the responses of glomeruli rather than odor-specific 
responses. Thus, we proceeded to interpret the models in terms 
of how they were tuned to glomerulus-level responses. In the 
case of the odor-vs-air model, we noted that the loadings of PC 1 
of both ORN and PN neural activity were non-negative across 
all glomerulus-odor response dimensions (Fig 2a, d). This sug-
gests PC 1 captures each individual’s total global response to all 
glomerulus-odorant combinations. To test this intuition, we as-
sessed the performance of a linear model that simply sums the 
total response across all calcium dimensions (Fig 2b, e). When 
applied to ORN responses, this model predicted behavior with 
R2=0.25 (~80% of the biological signal); in the case of PN re-
sponses, this model was somewhat predictive (R2=0.10). For 
both ORNs and PNs, the model’s slope parameter (β) was nega-
tive (Table 1), meaning that stronger AL responses correlated 

with stronger preference for air, consistent with OCT being aver-
sive. I.e., flies whose ORNs and PNs respond, as a population, 
more strongly to OCT are more likely to avoid it.

Taking this approach with the model of odor-vs-odor preference, 
we observed that the loadings of PC2 of PN calcium responses 
contrast the responses of the DM2 and DC2 glomeruli with op-
posing weights (Fig 2g), suggesting that the activation of DM2 
relative to DC2 could predict the likelihood of a fly preferring 
OCT to MCH. Indeed, a linear model constructed from the total 
PN response in DM2 minus the total PN response in DC2 (Fig 
2h) could predict individual preference for OCT versus MCH 
(R2=0.12; explaining ~40% of biological signal; Fig 2i). The 
model beta coefficient was negative (Table 1), indicating that 
greater activation of DM2 vs DC2 correlates with preference for 
MCH specifically. With respect to odor-vs-odor behavior, we 
conclude that the relative responses of DM2 vs DC2 in PNs de-
termines an individual’s preference.

Odor experience has been shown to modulate subsequent AL 
responses27–29. This raises the possibility that our models were 
actually predicting individual flies’ past odor experiences (i.e., 
the specific pattern of odor stimulation flies received in the be-
havioral assay) rather than their preferences. To address this pos-
sibility, we imposed the specific odor experiences of previously 
monitored untethered flies (in the odor-vs-odor assay) on naive 
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Figure 2: Variation in global and relative glomerular responses explains individual preferences (a) PC 1 loadings of PN activity for flies tested 
for OCT-AIR preference (n=53 flies). (b) Interpreted PN PC 1 loadings. (c) Measured OCT-AIR preference versus preference predicted by the 
average peak response across all PN coding dimensions (n=53 flies). (d) PC 1 loadings of ORN activity for flies tested for OCT-AIR preference 
(n=30 flies). (e) Interpreted ORN PC 1 loadings. (f) Measured OCT-AIR preference versus preference predicted by the average peak response across 
all ORN coding dimensions (n=30 flies). (g) PC 2 loadings of PN activity for flies tested for OCT-MCH preference (n=69 flies). (h) Interpreted PN 
PC 2 loadings. (i) Measured OCT-MCH preference versus preference predicted by the average peak PN response in DM2 minus DC2 across all 
odors (n=69 flies). (j) Yoked control experiment outline and example behavior traces. Experimental flies are free to move about tunnels permeated 
with steady state OCT and MCH flowing into either end. Yoked control flies are delivered the same odor at both ends of the tunnel which matches 
the odor experienced at the nose of the experimental fly at each moment in time. (k) Imposed odor experience versus the odor experience predicted 
from PC 2 of PN activity (n=27 flies) evaluated on the model trained from data in Figure 1p.  

�

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.24.474127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/


Churgin & Lavrentovich et al., 2021 – preprint version – www.biorxiv.org 

“yoked” control flies (Fig 2j). We then measured odor responses 
in the PNs of these yoked flies, as before. Applying the PN PC 2 
model to the yoked calcium responses did not predict flies’ odor 
experience (R2=0.03; Fig 2k). Thus, the responses of DM2 vs 
DC2 in PNs do not predict individual open-loop odor experi-
ences.

Previous work found that PN response transients, rather than 
fixed points, contain more odor identity information30. We there-
fore asked at which times during odor presentation an individ-
ual’s neural responses could best predict odor preference. Apply-
ing each of our three successful calcium-to-behavior models 
(ORN PC1-odor-vs-air, PN PC1-odor-vs-air, PN PC2-odor-vs-
odor) to the time-varying calcium signals, we found that in all 
cases that behavior prediction generally rose during odor deliv-
ery (Fig S10a-c). In ORNs, the predictive accuracy remained 
high after odor offset, whereas in PNs it declined. Thus, the 
overall sensitivity of ORNs that appears to predict odor-vs-air 
preferences may persist after odor stimulation ends. The times 
during which calcium responses predicted individual behavior 
generally aligned to the times during which a linear classifier 
could decode odor identity from ORN or PN responses (Fig 
S10d), suggesting that idiosyncrasies in odor encoding predict 
individual preferences.

Pivoting to another level of biological regulation, we next inves-
tigated how structural variation in the nervous system might 
underlie the variations in neural activity that correlate with idio-
syncratic behavior. Because PN, but not ORN, calcium respons-
es predicted odor-vs-odor preference, we hypothesized that a 
circuit element between ORNs to PNs could confer onto PNs 
behaviorally-relevant physiological idiosyncrasies that are ab-
sent in ORNs. The ORN-PN synapse is an obvious candidate. 
We therefore visualized presynaptic T-bar density in ORNs using 
transgenic mStrawberry-tagged Brp-Short, immunohistochem-
istry and confocal microscopy31 after measuring individual pref-
erence for OCT versus MCH (Fig 3a, Fig S11). 

We used a semi-automated custom software to segment 4 of the 
5 focus glomeruli from confocal volumes of the AL (Fig 3b; 
DL5 was not readily segmentable across samples, but was dis-
pensable in all behavior-predicting models). We then quantified 
the volume, fluorescent intensity and “density” (intensity/vol-
ume) of Brp-Short staining within each glomerulus (Fig S11a-f). 
Of these measures, density was the most consistent across hemi-
spheres, while also showing variation across individuals, so we 
focused on this metric in subsequent analyses. 

To begin assessing the relationship between presynaptic struc-
tural variation and behavior, we calculated the principal compo-
nents of Brp-Short density across individuals and found that PCs 
1 and 2 were qualitatively similar to those measured in our cal-
cium imaging experiments in that PC 1 was non-negative posi-
tive across glomeruli, reflecting global average staining intensi-
ty, and PC 2 exhibited a large magnitude loading for DC2 
against negative loadings for the other glomeruli (Fig S11g). As 
in the PN calcium response models, PC 2 of Brp-Short density 
afforded the best prediction of odor-vs-odor preferences in train-
ing data (Fig 3d-f, R2 = 0.22, n=22 flies) and for test data col-
lected after training this model (Fig 3g, R2 = 0.08, n=31 flies). 
We tested our intuitive hypothesis that PC 2 captures the differ-
ential response of DM2 vs DC2, by applying the “DM2 minus 

DC2 model” (Fig 2h) to the Brp-Short data. While this rudimen-
tary model did not attain statistical significance, it trended in the 
right direction and had a negative beta coefficient, implying that 
higher presynaptic density in DM2 compared to DC2 correlates 
with preference for MCH (Table 2). This is consistent with the 
beta parameter of the PN calcium response model.

The range of differences between DM2 and DC2 Brp-Short 
staining across individuals (-50% to 40%; normalized by the 
average of the two glomeruli) was less than that of PN calcium 
response differences (-60% to 100%; Fig S12), suggesting that 
variation in presynaptic density is likely not the full explanation 
of variability in calcium responses. This is also consistent with 
the observation that the best presynaptic density models are less 
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Figure 3: Idiosyncratic presynaptic marker density in DM2 and 
DC2 predicts OCT-MCH preference (a) Experiment outline. (b) 
Example slice from a z-stack of the antennal lobe expressing 
Orco>Brp-Short (green) with DC2 and DM2 visible (white dashed 
outline). nc82 counterstain (magenta). (c) Example glomerulus 
segmentation masks extracted from an individual z-stack. (d) 
Bootstrapped R2 of OCT-MCH preference prediction from each of the 
first 4 principal components of Brp-Short density measured in ORNs 
(training set, n=22 flies). (e) PC 2 loadings of Brp-Short density. (f) 
Measured OCT-MCH preference versus preference predicted from PC 
2 of ORN Brp-Short density in a training set (n=22 flies). (g) 
Measured OCT-MCH preference versus preference predicted from PC 
2 on ORN Brp-Short density in a test set (n=31 flies) evaluated on a 
model trained on data from panel (f). (h) Measured OCT-MCH 
preference versus preference predicted from ORN Brp-Short density in 
DM2 minus DC2 (n=53 flies). (i) Example expanded AL expressing 
Or13a>Brp-Short (left) and Imaris-identified puncta from that sample 
(right). (j) OCT-MCH preference score plotted against Brp-Short 
puncta density in expanded Or13a>Brp-Short samples (n=8 flies). (k) 
OCT-MCH preference score plotted against Brp-Short median puncta 
volume in expanded Or13a>Brp-Short samples (n=8 flies).  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predictive of behavior than the the best calcium response models 
(R2=.09 vs R2=0.23; capturing ~30% and ~80% of biological 
signal, respectively; Fig 1p,q vs Fig 3f,g). Nevertheless, these 
results suggest that differences in presynaptic inputs to DM2 and 
DC2 PNs may contribute to variation in DM2 and DC2 calcium 
dynamics, in turn giving rise to individual preferences for OCT 
versus MCH.

To better understand what variable Brp-Short staining represent-
ed on a microstructural level, we performed paired behavior and 
expansion microscopy in flies expressing Brp-Short specifically 
in DC2-projecting ORNs (Movie 3). Using expansion mi-
croscopy32,33, we achieved a ~4-fold increase in linear resolution 
in immunostained samples, allowing us to visualize individual 
Brp-Short puncta (Fig 3i)32. While the sample size (n=8) of this 
imaging pipeline did not warrant a formal modeling analysis, we 
observed that the trend between density of Brp-Short in DC2 and 
odor-vs-odor preference was consistent with a positive correla-
tion, whereas the trend between Brp-Short volume and odor-vs-
odor preference was not (Fig 3j,k). These results hint that varia-
tion in the density of presynaptic sites, rather than other biophys-
ical properties, may be a critical factor underlying physiological 
and behavioral individuality. 

Finally, we sought an integrative understanding of how synaptic 
variation plays out across the olfactory circuit to produce behav-

iorally-relevant physiological variation. We developed a leaky-
integrate-and-fire model of the entire AL, comprising 3,062 
spiking neurons and synaptic connectivity taken directly from 
the Drosophila hemi brain connectome34. Our overall approach 
with this model (Fig 4a) was to 1) confirm that it could perform 
canonical AL computations, particularly the transformation of 
odor representations from ORNs to PNs, 2) introduce different 
kinds of stochastic variations to the circuit (corresponding to 
idiosyncratic developmental variants of the AL), and 3) deter-
mine what kind(s) of stochastic variation produce the patterns of 
idiosyncratic PN physiological variation we observed in our cal-
cium imaging experiments. This strategy has the potential to link 
developmental variation at the synapse level to the physiological 
variation that appears to be driving behavioral individuality.

The biophysical properties of neurons in our model (Fig 4b, Ta-
ble 3) were determined by published electrophysiological studies 
(See Modeling Supplementary Methods) and similar to those 
used in previous fly models35,36. The polarity of neurons was 
determined largely by their cell type (ORNs are excitatory, PNs 
predominantly excitatory, and LNs predominantly inhibitory. See 
Supplementary Methods for details). The strength of synaptic 
connections between any pair of AL neurons was given by the 
hemibrain connectome34 (Fig 4c). Odor inputs were simulated by 
injecting current into ORNs to produce firing rates in those neu-
rons that match published ORN-odor recordings37, and the out-
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Figure 4: Simulation of developmentally stochastic olfactory circuits (a) AL modeling analysis outline. (b) Leaky-integrator dynamics of each 
simulated neuron.  When a neuron’s voltage reaches its firing threshold, a templated action potential is inserted, and downstream neurons receive a 
postsynaptic current. See Modeling Supplementary Methods. (c) Synaptic weight connectivity matrix, derived from the hemibrain connectome34. 
(d) Spike raster for randomly selected example neurons from each AL cell type. Colors indicate ORN/PN glomerular identity and LN polarity 
(i=inhibitory, e=excitatory). (e) Schematic illustrating sources of developmental stochasticity as implemented in the simulated AL framework. See 
Movies 4-6 for the effects of these resampling methods on the synaptic weight connectivity matrix. (f) PN glomerulus-odor response vectors for 8 
idiosyncratic ALs subject to Input spike Poisson timing variation, PN input synapse density resampling, and ORN and LN population bootstrapping. 
(g) Loadings of the principal components of PN glomerulus-odor responses as observed across experimental flies (top). Dotted outlines highlight 
loadings selective for the DC2 and DM2 glomerular responses, which underlie predictions of individual behavioral preference. (h-k) As in (g) for 
simulated PN glomerulus-odor responses subject to Input spike Poisson timing variation, PN input synapse density resampling, and ORN and LN 
population bootstrapping. See Fig S16 for additional combinations of idiosyncrasy methods. In (f-k) the sequence of odors within each glomerular 
block is: OCT, 1-hexanol, ethyl-lactate, 2-heptanone, 1-pentanol, ethanol, geranyl acetate, hexyl acetate, MCH, pentyl acetate and butanol.  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put of the system was recorded as the firing rates of PNs during 
odor stimulation (Fig 4d). At this point, there remained only four 
free parameters in our model, the relative sensitivity (postsynap-
tic current per upstream action potential) of each AL cell type 
(ORNs, PNs, excitatory LNs and inhibitory LNs). We explored 
this parameter space manually, and identified a configuration in 
which AL simulation (Fig S13) recapitulated four canonical 
properties seen experimentally (Fig S14): 1) typical firing rates 
at baseline and during odor stimulation18,38–40, 2) a more uniform 
distribution of PN firing rates compared to ORN rates18, 3) 
greater separation of PN odor representations compared to ORN 
representations18, and 4) a sub-linear transfer function between 
ORNs and PNs18. Thus, our simulated AL appeared to perform 
the fundamental computations of real ALs, providing a baseline 
for assessing the effects of idiosyncratic variation.

We simulated stochastic individuality in the AL circuit in two 
ways (Fig 4e): glomerular-level variation in PN input-synapse 
density and bootstrapping of neuronal compositions within cell 
types. The former reflects a statistical relationship observed be-
tween glomerular volume and synapse density within the hemi-
brain connectome (Fig S15). The latter reflects variety in the 
outcomes of the developmental programs for ORNs, PNs, etc. 
Movies 4-6 show the diverse connectivity matrices attained un-
der these resampling approaches. We simulated odor responses 
in thousands of ALs made idiosyncratic by these sources of vari-
ation, and in each, recorded the firing rates of PNs when stimu-
lated by the 12 odors from our experimental panel (Fig 4f, Fig 
S13). We also recorded the effect of random Poisson timing of 
input spikes in the absence of circuit idiosyncrasy.

To determine which, if any, sources of variation produced pat-
terns of PN coding variation consistent with our empirical mea-
surements, we examined the loadings of the principal compo-
nents of PN responses across real idiosyncratic flies and simulat-
ed idiosyncratic ALs. Per above, empirical PN responses are 
strongly correlated at the level of glomeruli (Figs 4g, Figs S6, 
S7). In the model, resampling PN input-synapse density across 
glomeruli produced PN response correlations strongly organized 
by glomerulus, not surprisingly (Fig 4h). This served as a posi-
tive control that the AL model can recapitulate the empirical 
structure of PN response variation. As a negative control, varia-
tion in PN responses due solely to poisson timing of ORN input 
spikes (i.e., absent any circuit idiosyncrasy) was not organized at 
the glomerular level (Fig 4i). Strikingly, bootstrapping ORN 
membership yielded a strong glomerular organization in PN re-
sponses (Fig 4j). Bootstrapping LNs, in contrast, produced much 
less glomerular organization (Fig 4k). The PCA loadings for PN 
responses under all combinations of cell type bootstrapping and 
PN input-synapse density resampling are given in Fig S16. 

Notably, DM2 and DC2 (also DL5) stand out in the PCA load-
ings under PN input-synapse density resampling and ORN boot-
strapping (Fig 4i,j), suggesting that behaviorally-relevant PN 
coding variation is recapitulated in this modeling framework. To 
formalize this analysis, for each idiosyncratic AL, we computed 
a “behavioral preference” by applying the PN PC2 linear model 
in Fig 1o-q. We then determined how accurately a linear classifi-
er could distinguish OCT- vs MCH-preferring ALs in the space 
of the first 3 principal components of PN responses, as a func-
tion of the source of idiosyncrasy (Fig S17). High accuracy was 
attained with sources of circuit variation within PN loadings 

highlighting DM2 and DC2 (namely PN input-synapse density 
resampling and ORN bootstrapping). Thus, developmental vari-
ability in ORN populations may drive patterns of PN physiologi-
cal variation that in turn drive individuality in odor-vs-odor 
choice behavior. 

Discussion 

We found elements of the Drosophila olfactory circuit where 
patterns of physiological activity emerge that are predictive of 
individual behavioral preferences. These circuit elements can be 
considered loci of individuality, as they appear to harbor the ori-
gins of idiosyncratic preferences among isogenic animals reared 
in the same environment. Specifically, we found that the total 
responsiveness of ORNs predicts idiosyncratic preferences in an 
odor-vs-air assay, and that contrasting glomerular activation in 
PNs predicts idiosyncratic preferences in an odor-vs-odor assay 
(Figs 1, 2). Both of these circuit elements are in the olfactory 
sensory periphery, suggesting that behavioral idiosyncrasy arises 
early in the sensorimotor transformation. 

Previous work has found mammalian peripheral circuit areas are 
predictive of individual behavior25,26,41,42, but this study is among 
the first11,12,43 to link cellular-level circuit variants and individual 
behavior in the absence of genetic variation. Another key con-
clusion of our study is that loci of individuality are likely to vary, 
even within the sensory periphery, with the specific behavioral 
paradigm (i.e., odor-vs-odor or odor-vs-air). Our ability to pre-
dict behavioral preferences was limited by the repeatability of 
the behavior itself (Fig S8). Low persistence of odor preference 
may be attributable to factors like internal states or plasticity. It 
may be fruitful in future studies to map circuit elements whose 
activity predicts trial-to-trial behavioral fluctuations within indi-
viduals. 

Seeking insight into the molecular basis of behaviorally-relevant 
physiological variation, we imaged Brp in the axon terminals of 
the ORN-PN synapse, using confocal and expansion microscopy. 
We found that Brp glomerular (and probably puncta) density was 
a predictor of individual odor-vs-odor preferences (Fig 3). High-
er Brp in the DM2 glomerulus predicted stronger MCH prefer-
ence, like higher calcium responses in DM2 PNs, suggesting that 
variation in PN inputs might underlie PN physiological varia-
tion. This is consistent with the recent finding of a linear rela-
tionship between synaptic density and excitatory postsynaptic 
potentials44 and another study in which idiosyncratic synaptic 
density in central complex output neurons (measured by light 
microscopy) predicts individual locomotor behavior12. The pre-
dictive relationship between Brp and behavior was weaker than 
that of PN calcium responses, suggesting there are other deter-
minants, such as other synaptic proteins, neurite morphology, or 
the influence of idiosyncratic LNs21 modulating the ORN-PN 
transformation45.  

To integrate our synaptic and physiological results, in the context 
of the whole olfactory circuit, we implemented a spiking model 
with 3,062 neurons and synaptic weights drawn directly from the 
fly connectome34 (Fig 4). With light parameter tuning, this mod-
el recapitulated canonical AL computations, providing a baseline 
for assessing the effects of idiosyncratic stochastic variation. We 
simulated individual ALs with a variety of sources of variation, 
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reflecting developmental stochasticity in PN input synapse den-
sity and the population composition of AL cell types. Two 
sources of variation (PN input synapse density and ORN boot-
strapping) produced patterns of PN response variation that 
matched our experimental results, namely correlated responses 
across odors in the DC2 and DM2 glomeruli. These sources of 
variation specifically implicate the ORN-PN synapse (like our 
Brp results) as an important substrate for establishing behav-
iorally-relevant patterns of PN response variation.

The flies used in our experiments were isogenic and reared in 
standardized laboratory conditions that produce reduced behav-
ioral individuality compared to enriched environments46–48. Yet, 
even these conditions yield substantial behavioral individuality. 
How this happens is unclear, with possibilities ranging from 
thermal fluctuations at the molecular scale to macroscopic, but 
seemingly irrelevant, variations like the exact fill level of the 
culture media49. Developing nervous systems employ various 
compensation mechanisms to dampen out the effects of these 
fluctuations9,20. But behavioral variation may be beneficial, sup-
porting a bet-hedging strategy50 to counter environmental fluctu-
ations4,51–53. Empirically, the net effect of dampening and accret-
ed ontological54 fluctuations is individuals with diverse behav-
iors. This process unfolds across all levels of biological regula-
tion. Just as PN response variation appears to be partially rooted 
in glomerular Brp variation, the latter has its own molecular 
roots, including, perhaps, stochasticity in gene expression55,56, 
itself a predictor of idiosyncratic behavioral biases57. Improved 
methods to longitudinally assay the fine-scale molecular and 
anatomical makeup of behaving organisms throughout develop-
ment and adulthood will be invaluable to further illuminate the 
mechanistic origins of individuality.  

Methods 

Data and code 

All data supporting these results and the analysis code are avail-
able at http://lab.debivort.org/odor-loci-of-individuality/.

Fly rearing

Experimental flies were reared in a Drosophila incubator (Perci-
val Scientific DR-36VL) at 22° C, 40% relative humidity, and 
12:12h light:dark cycle. Flies were fed cornmeal/dextrose medi-
um, as previously described4. Mated female flies aged 3 days 
post-eclosion were used for behavioral persistence experiments. 
Mated female flies aged 7 to 15 days post-eclosion were used for 
all paired behavior-calcium imaging and immunohistochemistry 
experiments.

Fly stocks

The following stocks were obtained from the Bloomington 
Drosophila Stock Center: P{20XUAS-IVS-GCaMP6m}attP40 
(BDSC #42748), w[*]; P{w[+mC]=Or13a-GAL4.F}40.1 (BDSC 
#9945), w[*]; P{w[+mC]=Or19a-GAL4.F}61.1 (BDSC #9947), 
w[*]; P{w[+mC]=Or22a-GAL4.7.717}14.2 (BDSC #9951), 
w[*]; P{w[+mC]=Orco-GAL4.W}11.17; TM2/TM6B, Tb[1] 
(BDSC #26818). Transgenic lines were outcrossed to the iso-

genic line isokh114 for at least 5 generations prior to being used 
in any experiments. GH146-Gal4 was a gift provided by Y. 
Zhong4. w; UAS-Brp-Short-mStrawberry; UAS-mCD8-GFP; + 
was a gift of Timothy Mosca and was not outcrossed to the 
isokh11 background31.

Odor delivery

Odor delivery during behavioral tracking and neural activity 
imaging was controlled with isolation valve solenoids (NRe-
search Inc.)4. Saturated headspace from 40 ml vials containing 5 
ml pure odorant were serially diluted via carbon-filtered air to 
generate a variably (10-25%) saturated airstream controlled by 
digital flow controllers (Alicat Scientific) and presented to flies 
at total flow rates of ~100 mL/min. The odor panel used for 
imaging was comprised of the following odorants: 2-heptanone 
(CAS #110-43-0, Millipore Sigma), 1-pentanol (CAS #71-41-0, 
Millipore Sigma), 3-octanol (CAS #589-98-0, Millipore Sigma), 
hexyl-acetate (CAS #142-92-7, Millipore Sigma), 4-methylcy-
clohexanol (CAS #589-91-3, Millipore Sigma), pentyl acetate 
(CAS #628-63-7, Millipore Sigma), 1-butanol (CAS #71-36-3, 
Millipore Sigma), ethyl lactate (CAS #97-64-3, Millipore Sig-
ma), geranyl acetate (CAS #105-87-3, Millipore Sigma), 1-
hexanol (CAS #111-27-34, Millipore Sigma), citronella java 
essential oil (191112, Aura Cacia), and 200 proof ethanol 
(V1001, Decon Labs). 

Odor preference behavior

Odor preference was measured at 25°C and 20% relative humid-
ity. As previously described4, individual flies confined to cus-
tom-fabricated tunnels were illuminated with infrared light and 
behavior was recorded with a digital camera (Basler) and zoom 
lens (Pentax). The odor choice tunnels were 50 mm long, 5 mm 
wide, and 1.3 mm tall. Custom real-time tracking software writ-
ten in Matlab was used to track centroid, velocity, and principal 
body axis angle throughout the behavioral experiment, as previ-
ously described4. After a 3-minute acclimation period, odorants 
were delivered to either end of the tunnel array for 3 minutes. 
Odor preference score was calculated as the fraction of time 
spent in the reference side of the tunnel during odor-on period 
minus the time spent in the reference side of the tunnel during 
the pre-odor acclimation period. 

Behavioral preference persistence measurements

After measuring odor preference, flies were stored in individual 
housing fly plates (modified 96-well plates; FlySorter, LLC) on 
standard food, temperature, humidity, and lighting conditions. 
Odor preference of the same individuals was measured 3 and/or 
24 hours later. In some cases, fly tunnel position was random-
ized between measurements. We observed that randomization 
had little effect on preference persistence.

Calcium imaging

Flies expressing GCaMP6m in defined neural subpopulations 
were imaged using a custom-built two-photon microscope and 
ultrafast Ti:Sapphire laser (Spectra-Physics Mai Tai) tuned to 
930 nm. For paired behavior and imaging experiments, the time 
elapsed between behavior measurement and imaging ranged 
from 15 minutes to 3 hours. Flies were anesthetized on ice and 
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immobilized in an aluminum sheet with a female-fly-sized hole 
cut in it. The head cuticle between the antennae and ocelli was 
removed along with the tracheae to expose the ALs from the 
dorsal side. Volume scanning was performed using a piezoelec-
tric objective mount (Physik Instrumente). ScanImage 2013 
software (Vidrio Technologies) was used to coordinate gal-
vanometer laser scanning and image acquisition. Custom Matlab 
(Mathworks) scripts were used to coordinate image acquisition 
and control odor delivery. 256 by 192 (x-y) pixel 16-bit tiff im-
ages were recorded. The piezo travel distance was adjusted be-
tween 70 and 90 µm so as to cover most of the AL. The number 
of z-sections in a given odor panel delivery varied between 7 and 
12 yielding a volume acquisition rate of 0.833 Hz. Odor delivery 
occurred from 6-9.6s of each recording.

Each fly experienced up to four deliveries of the odor panel. The 
antennal lobe being recorded (left or right) was alternated after 
each successful completion of an odor panel. Odors were deliv-
ered in randomized order. In cases where baseline fluorescence 
was very weak or no obvious odor responses were visible, not all 
four panels were delivered.

Glomerulus segmentation and labeling

Glomerular segmentation masks were extracted from raw image 
stacks using a k-means clustering algorithm based on time-vary-
ing voxel fluorescence intensities, as previously described4. Each 
image stack, corresponding to a single odor panel delivery, was 
processed individually. Time-varying voxel fluorescence values 
for each odor delivery were concatenated to yield a voxel-by-
time matrix consisting of each voxel’s recorded value during the 
course of all 13 odor deliveries of the odor panel. After z-scor-
ing, principal component analysis was performed on this matrix 
and 75% of the variance was retained. Next, k-means (k=80, 50 
replicates with random starting seeds) was performed to produce 
50 distinct voxel cluster assignment maps which we next used to 
calculate a consensus map. This approach was more accurate 
than clustering based on a single k-means seed. 

Of the 50 generated voxel cluster assignment maps, the top 5 
were selected by choosing those maps with the lowest average 
within-cluster sum of distances, selecting for compact glomeruli. 
The remaining maps were discarded. Next, all isolated voxel 
islands in each of the top 5 maps were identified and pruned 
based on size (minimum size = 100 voxels, maximum size = 
10000 voxels). Finally, consensus clusters were calculated by 
finding voxel islands with significant overlap across all 5 of the 
pruned maps. Voxels which fell within a given cluster across all 
5 pruned maps were added to the consensus cluster. This process 
was repeated for all clusters until the single consensus cluster 
map was complete. In some cases we found by manual inspec-
tion that some individual glomeruli were clearly split into two 
discrete clusters. These splits were remedied by automatically 
merging all consensus clusters whose centroids were separated 
by a physical distance of less than 30 voxels and whose peak 
odor response Spearman correlation was greater than 0.8. Final-
ly, glomeruli were manually labeled based on anatomical posi-
tion, morphology, and size24. We focused our analysis on 5 
glomeruli (DM1, DM2, DM3, DL5, and DC2) which could be 
observed in most of our recordings. However, not all 5 glomeruli 
were identified in all recordings (Fig S3). Missing glomerular 
data was later mean-imputed.

Calcium image data analysis 

All data was processed and analyzed in Matlab 2018a (The 
Mathworks, Natick, MA USA). Calcium responses for each vox-
el were calculated as Δf/f = [f(t) - F]/F, where f(t) and F are the 
instantaneous and average fluorescence, respectively. Each 
glomerulus' time-dependent calcium response was calculated as 
the mean Δf/f across all voxels falling within the glomerulus’ 
automatically-generated segmentation mask during a single vol-
ume acquisition. Time-varying odor responses were normalized 
to baseline by subtracting the median of pre-odor Δf/f from each 
trace. Peak odor response was calculated as the maximum fluo-
rescence signal from 7.2s to 10.8s (images 6 through 9) of the 
recording.

To compute principal components of calcium dynamics, each 
fly’s complement of odor panel responses (a 5 glomeruli by 13 
odors = 65-dimensional vector) was concatenated. Missing 
glomerulus-odor response values were filled in with the mean 
glomerulus-odor pair across all fly recordings for which the data 
was not missing. After infilling, principal component analysis 
was carried out with individual odor panel deliveries as observa-
tions and glomerulus-odor responses pairs as features. 

In a subset of experiments in which we imaged calcium activity, 
some solenoids failed to open, resulting in the failure of odor 
delivery in a small number of trials. In these cases, we identified 
trials with valve failures by manually recognizing that glomeruli 
failed to respond during the nominal odor period. These trials 
were treated as missing data and infilled, as described above. 
Fewer than ~10% of flies and 5% of odor trials were affected.

For all predictive models constructed, the average principal 
component score or glomerulus-odor Δf/f response across trials 
was used per individual; that is, each fly contributed one data 
point to the relevant model. Linear models were constructed 
from behavior scores and the relevant predictor (principal com-
ponent, average Δf/f across dimensions, specific glomerulus 
measurements) as described in the text and Tables 1-2. To pre-
dict behavior as a function of time during odor delivery, we ana-
lyzed data as described above, but considered only Δf/f at each 
single time point (Fig S10), rather than averaging during the 
peak response interval.

To decode individual identity from neural responses, we first 
performed PCA on individual odor panel peak responses. We 
retained principal component scores constituting specified frac-
tions of variance (Extended Figure 4d) and trained a linear logis-
tic classifier to predict individual identity from single odor panel 
deliveries.

To decode odor identity from neural responses, each of the 5 
recorded glomeruli were used as features, and the calcium re-
sponse of each glomerulus to a specific odor at a specified time 
point were used as observations (PNs, n=5317 odor deliveries; 
ORNs, n=2704 odor deliveries). A linear logistic classifier was 
trained to predict the known odor identity using 2-fold cross-
validation. That is, a model was trained on half the data and 
evaluated on the remaining half, and then this process was re-
peated with the train and test half reversed. The decoding accu-
racy was quantified as the fraction of odor deliveries in which 
the predicted odor was correct.
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DoOR data

DoOR data for the glomeruli and odors relevant to our study was 
downloaded from http://neuro.uni-konstanz.de/DoOR/default-
.html37. 

Yoked odor experience experiments 

We selected six flies for which both odor preference and neural 
activity were recorded to serve as the basis for imposed odor 
experiences for yoked control flies. The experimental flies were 
chosen to represent a diversity of preference scores. Each exper-
imental fly’s odor experience was binned into discrete odor 
bouts to represent experience of either MCH or OCT based on 
its location in the tunnel as a function of time (Figure 2j). Odor 
bouts lasting less than 100 ms were omitted due to limitations on 
odor-switching capabilities of the odor delivery apparatus. To 
deliver a given experimental fly’s odor experience to yoked con-
trols, we set both odor streams (on either end of the tunnel appa-
ratus) to deliver the same odor experienced by the experimental 
fly at that moment during the odor-on period. No odor was de-
livered to yoked controls during time points in which the exper-
imental fly resided in the tunnel choice zone (central 5 mm). See 
Figure 2j for an example pair of experimental fly and yoked con-
trol behavior and odor experience.

Immunohistochemistry

After measuring odor preference behavior, 7-15 day-old flies 
were anesthetized on ice and brains were dissected in phosphate 
buffered saline (PBS). Dissection and immunohistochemistry 
were carried out as previously reported59. The experimenter was 
blind to the behavioral scores of all individuals throughout dis-
section, imaging, and analysis. Individual identities were main-
tained by fixing, washing, and staining each brain in an individ-
ual 0.2 mL PCR tube using fluid volumes of 100 uL per brain 
(Fisher Scientific). Primary incubation solution contained mouse 
anti-nc82 (1:40, DSHB), chicken anti-GFP (1:1000, Aves Labs), 
rabbit anti-mStrawberry (1:1000, biorbyt), and 5% normal goat 
serum (NGS, Invitrogen) in PBT (0.5% Triton X-100 in PBS). 
Secondary incubation solution contained Atto 647N-conjugated 
goat anti-mouse (1:250, Millipore Sigma), Alexa Fluor 568-con-
jugated goat anti-rabbit (1:250), Alexa Fluor 488-conjugated 
goat anti-chicken (1:250, ThermoFisher), and 5% NGS in PBT. 
Primary and secondary incubation times were 2 and 3 
overnights, respectively, at 4° C. Stained samples were mounted 
and cleared in Vectashield (H-1000, Vector Laboratories) be-
tween two coverslips (12-568B, Fisher Scientific). Two rein-
forcement labels (5720, Avery) were stacked to create a 0.15 mm 
spacer. 

Expansion microscopy

Immunohistochemistry for expansion microscopy was carried 
out as described above, with the exception that antibody concen-
trations were modified as follows: mouse anti-nc82 (1:40), 
chicken anti-GFP (1:200), rabbit anti-mStrawberry (1:200), Atto 
647N-conjugated goat anti-mouse (1:100), Alexa Fluor 568-con-
jugated goat anti-rabbit (1:100), Alexa Fluor 488-conjugated 
goat anti-chicken (1:100). Expansion of stained samples was 
performed as previously described32,33. Expanded samples were 
mounted in coverslip-bottom petri dishes (MatTek Corporation) 

and anchored by treating the coverslip with poly-l-lysine solu-
tion (Millipore Sigma) as previously described33. 

Confocal imaging 

All confocal imaging was carried out at the Harvard Center for 
Biological Imaging. Unexpanded samples were imaged on an 
LSM700 (Zeiss) inverted confocal microscope equipped with a 
40x oil-immersion objective (1.3 NA, EC Plan Neofluar, Zeiss). 
Expanded samples were imaged on an LSM880 (Zeiss) inverted 
confocal microscope equipped with a 40x water-immersion ob-
jective (1.1 NA, LD C-Apochromat, Zeiss). Acquisition of Z-
stacks was automated with Zen Black software (Zeiss).

Standard confocal image analysis

We used custom semi-automated code to generate glomerular 
segmentation masks from confocal z-stacks of unexpanded 
Orco>Brp-Short brains. Using Matlab, each image channel was 
median filtered (σx, σy, σz = 11, 11, 1 pixels) and downsampled in 
x and y by a factor of 11. Next, an ORN mask was generated by 
multiplying and thresholding the Orco>mCD8 and Orco>Brp-
Short channels. Next, a locally normalized nc82 and 
Orco>mCD8 image stack were multiplied and thresholded, and 
the ORN mask was applied to remove background and other 
undesired brain structures. This pipeline resulted in a binary im-
age stack which maximized the contrast of the glomerular struc-
ture of the antennal lobe. We then applied a binary distance 
transform and watershed transform to generate discrete subre-
gions which aimed to represent segmentation masks for each 
glomerulus tagged by Orco-Gal4. 

However, this procedure generally resulted in some degree of 
under-segmentation; that is, some glomerular segmentation 
masks were merged. To split each merged segmentation mask, 
we convolved a ball (whose radius was proportional to the cube 
root of the volume of the segmentation mask in question) across 
the mask and thresholded the resulting image. The rationale of 
this procedure was that 2 merged glomeruli would exhibit a 
mask shape resembling two touching spheres, and convolving a 
similarly-sized sphere across this volume followed by threshold-
ing would split the merged object. After ball convolution, we 
repeated the distance and watershed transform to once more 
generate discrete subregions representing glomerular segmenta-
tion masks. This second watershed step generally resulted in 
over-segmentation; that is, by visual inspection it was apparent 
that many glomeruli were split into multiple subregions. There-
fore, we finally manually agglomerated the over-segmented sub-
regions to generate single segmentation masks for each glomeru-
lus of interest. We used a published atlas to aid manual identifi-
cation of glomeruli24. The total Brp-Short fluorescence signal 
within each glomerulus was determined and divided by the vol-
ume of the glomerulus’ segmentation mask to calculate Brp-
Short density values.

Expansion microscopy image analysis

The spots function in Imaris 9.0 (Bitplane) was used to identify 
individual Brp-Short puncta in expanded sample image stacks of 
Or13a>Brp-Short samples31. The spot size was set to 0.5 um, 
background subtraction and region-growing were enabled, and 
the default spot quality threshold was used for each image stack. 
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Identified spots were used to mask the Brp-Short channel and 
the resultant image was saved as a new stack. In Matlab, a 
glomerular mask was generated by smoothing (σx, σy, σz = 40, 
40, 8 pixels) and thresholding (92.5th percentile) the raw Brp-
Short image stack. The mask was then applied to the spot image 
stack to remove background spots. Finally, the masked spot im-
age stack was binarized and spot number and properties were 
quantified.

Antennal Lobe modeling

We constructed a model of the antennal lobe to test the effect of 
circuit variation on PN activity variation across individuals. Our 
general approach to producing realistic circuit activity with the 
AL model was 1) using experimentally-measured parameters 
whenever possible (principally the connectome wiring diagram 
and biophysical parameters measured electrophysiologically), 2) 
associating free parameters only with biologically plausible cat-
egories of elements, while minimizing their number, and 3) tun-
ing the model using those free parameters so that it reproduced 
high-level patterns of activity considered in the field to represent 
the canonical operations of the AL. Simulations were run in 
Python (version 3.6)59, and model outputs were analyzed using 
Jupyter notebooks60 and Python and Matlab scripts. 

AL model neurons

Release 1.2 of the hemibrain connectomics dataset34 was used to 
set the connections in the model. Hemibrain body IDs for ORNs, 
LNs, and PNs were obtained via the lists of neurons supplied in 
the supplementary tables in61. ORNs and PNs of non-olfactory 
glomeruli (VP1d, VP1l, VP1m, VP2, VP3, VP4, VP5) were ig-
nored, leaving 51 glomeruli. Synaptic connections between the 
remaining 2574 ORNs, 197 LNs, 166 mPNs, and 130 uPNs were 
queried from the hemibrain API. All ORNs were assigned to be 
excitatory62. Polarities were assigned to PNs based on the neuro-
transmitter assignments in63. mPNs without neurotransmitter 
information were randomly assigned an excitatory polarity with 
probability equal to the fraction of neurotransmitter-identified 
mPNs that are cholinergic; the same process was performed for 
uPNs. After confirming that the model’s output was qualitatively 
robust to which mPNs and uPNs were randomly chosen, this 
random assignment was performed once and then frozen for sub-
sequent analyses.

Of the 197 LNs, we assigned 31 to be excitatory, based on the 
estimated 1:5.4 ratio of eLNs to iLNs in the AL64. To account for 
observations that eLNs broadly innervate the AL65, all LNs were 
ranked by the number of innervated glomeruli, and the 31 eLNs 
were chosen uniformly at random from the top 50% of LNs in 
the list. This produced a distribution of glomerular innervations 
in eLNs qualitatively similar to that of krasavietz LNs in Sup-
plementary Fig 6 of 21.

Voltage model

We used a single-compartment leaky-integrate-and-fire voltage 
model for all neurons as in35, in which each neuron had a voltage 
Vi(t) and current Ii(t). When the voltage of neuron i was beneath 
its threshold Vi, thr, the following dynamics were obeyed:

Each neuron i had electrical properties: membrane capacitance 
Ci, resistance Ri, and resting membrane potential Vi,0 with values 
from electrophysiology measurements (Table 3).

When the voltage of a neuron exceeded the threshold Vi, thr, a 
templated action potential was filled into its voltage time trace, 
and a templated postsynaptic current was added to all down-
stream neurons, following the definitions in35.

Odor stimuli were simulated by triggering ORNs to spike at fre-
quencies matching known olfactory receptor responses to the 
desired odor. The timing of odor-evoked spikes was given by a 
Poisson process, with firing rate FR for ORNs of a given 
glomerulus governed by:  

FRmax, the maximum ORN firing rate, was set to 400 Hz. Dglom, 

odor is a value between 0 and 1 from the DoOR database, repre-
senting the response of an odorant receptor/glomerulus to an 
odor, estimated from electrophysiology and/or fluorescence 
data37. ORNs display adaptation to odor stimuli62, captured by 
the final term with timescale ta = 110 ms to 75% of the initial 
value, as done in66. Thus, the functional maximum firing rate of 
an ORN was 75% of 400 Hz = 300 Hz, matching the highest 
ORN firing rates observed experimentally67. After determining 
the times of ORN spikes according to this firing-rate rule, spikes 
were induced by the addition of 106 picoamps in a single time 
step. This reliably triggered an action potential in the ORN, re-
gardless of currents from other neurons. In the absence of odors, 
spike times for ORNs were drawn by a Poisson process at 10 Hz, 
to match reported spontaneous firing rates68. 

For odor-glomeruli combinations with missing DoOR values 
(40% of the dataset), we performed imputation via alternating 
least squares (using the pca function with option ‘als’ to infill 
missing values69) on the odor x glomerulus matrix 1000 times 
and taking the mean infilled matrix, which provides a closer 
match to ground truth missing values than a single run of ALS 
(Figure S4 of 70). 

A neuron j presynaptic to i supplies its current Ij(t) scaled by the 
synapse strength Wji, the number of synapses in the hemibrain 
dataset from neuron j to i. Rows in W corresponding to neurons 
with inhibitory polarity (i.e. GABAergic PNs or LNs) were set 
negative. Finally, post-synaptic neurons (columns of the connec-
tivity matrix) have a class-specific multiplier ai, a hand-tuned 
value, described below.

AL model tuning

Class-specific multiplier current multipliers (ai) were tuned us-
ing the panel of 18 odors from18 (our source for several experi-
mental observations of high-level AL function): benzaldehyde, 
butyric acid, 2,3-butanedione, 1-butanol, cyclohexanone, Z3-
hexenol, ethyl butyrate, ethyl acetate, geranyl acetate, isopentyl 
acetate, isoamyl acetate, 4-methylphenol, methyl salicylate, 3-
methylthio-1-propanol, octanal, 2-octanone, pentyl acetate, E2-
hexenal, trans-2-hexenal, gamma-valerolactone. Odors were 
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“administered” for 400 ms each, with 300 ms odor-free pauses 
between odor stimuli.

The high-level functions of the AL that represent a baseline, 
working condition were: (1) firing rates for ORNs, LNs, and 
PNs matching the literature (listed in Table 318,38–40, (2) a more 
uniform distribution of PN firing rates during odor stimuli com-
pared to ORN firing rates, (3) greater separation of representa-
tions of odors in PN-coding space than in ORN-coding space, 
and (4) a sublinear transfer function between ORN firing rates 
and PN firing rates. Features (2) - (4) relate to the role of the AL 
in enhancing the separability of similar odors18.

To find a parameterization with those functions, we tuned the 
values of ai as scalar multipliers on ORN, eLN, iLN, and PN 
columns of the hemibrain connectivity matrix. Thus, these val-
ues represent cell type-specific sensitivities to presynaptic cur-
rents, which may be justified by the fact that ORNs/LNs/PNs are 
genetically distinct cell populations71,72. A small grid search of 
the four class-wise sensitivity parameters produced a configura-
tion that reasonably satisfied the above criteria (Fig S14). In this 
configuration, the ORN columns of the hemibrain connectivity 
matrix are scaled by 0.1, eLNs by 0.04, iLNs by 0.02, and PNs 
by 0.4. The relatively large multiplier on PNs is potentially con-
sistent with the fact that PNs are sensitive to small differences 
between weak ORN inputs18. Model outputs were robust over 
several different sets of ai, provided iLN sensitivity ≃ eLN < 
ORN < PN.

Notable ways in which the model behavior deviates from exper-
imental recordings (and thus caveats on the interpretation of the 
model) include: 1) Model LNs appear to have more heteroge-
neous firing rates than real LNs, with many LNs inactive for this 
panel of odor stimuli. This likely reflects a lack of plastic/ho-
meostatic mechanisms in the model to regularize LN firing rates 
given their variable synaptic connectivity21. 2) Some PNs had 
off-odor rates that are high compared to real PNs, resulting in a 
distribution of ON-OFF responses that had a lower limit than in 
real recordings. Qualitatively close matches were achieved be-
tween the model and experimental data in the distributions of 
odor representations in ORN vs PN spaces and the non-linearity 
of the ORN-PN transfer function.

AL model circuit variation generation

We generated AL circuit variability in two ways: cell-type boot-
strapping, and synapse density resampling. These methods as-
sume that the distribution of circuit configurations across indi-
vidual ALs can be generated by resampling circuit components 
within a single individual’s AL (neurons and glomerular synaptic 
densities, respectively, from the hemibrain EM volume). 

To test the effect of variation in the developmental complement 
of neurons of particular types, we bootstrapped populations of 
interest from the list of hemibrain neurons. Resampling with 
replacement of ORNs was performed glomerulus-by-glomeru-
lus, i.e., separately among each pool of ORNs expressing a par-
ticular Odorant receptor gene. The same was done for PNs. For 
LNs, all 197 LNs were treated as a single pool; there was no 
finer operation based on LN subtypes or glomerular innerva-
tions. This choice reflects the high developmental variability of 

LNs21. The number of synapses between a pair of bootstrapped 
neurons was equal to the synapse count between those neurons 
in the hemibrain connectivity matrix.

In some glomeruli, bootstrapping PNs produced unreasonably 
high variance in the total PN synapse count. For instance, DP1m, 
DC4, and DM3 each harbor PNs that differ in total synapse 
count by a factor of ~10. Since these glomeruli have between 
two to three PNs each, in a sizable proportion of bootstrap sam-
ples, all-highly connected (or all-lowly) connected PNs are cho-
sen in such glomeruli. To remedy this biologically unrealistic 
outcome, we examined the relationship between total input PN 
synapses within a glomerulus and glomerular volume (Fig S15). 
In the “synapse density resampling” method, we required that 
the number of PN input synapses within a glomerulus reflect a 
draw from the empirical relationship between total input PN 
synapses and glomerular volume as present in the hemibrain data 
set. This was achieved by, for each glomerulus, sampling from 
the following distribution that depends on glomerular volume, 
then multiplying the number of PN input synapses by a scalar to 
match that sampled value:

Here Sg is the PN input synapse count for glomerulus g, Vg is the 
volume of glomerulus g (in cubic microns), ε is a Gaussian noise 
variable with standard deviation σ, and a, d are the scaling factor 
and exponent of the volume term, respectively. The values of 
these parameters (a = 8.98, d = 0.73, σ = 0.38) were fit using 
maximum likelihood.  
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Supplementary materials  

Supplementary Figure 1: Behavioral measurements and individual preference persistence  (a) Behavioral measurement apparatus (adapted 
from 4). (b) Odor preference persistence over 3 hours for flies given a choice between 3-octanol and air (n=34 flies). (c) Odor preference persistence 
over 24 hours for flies given a choice between 3-octanol and air (n=97 flies). (d) Odor preference persistence over 3 hours for flies given a choice 
between 3-octanol and 4-methylcyclohexanol (n=51 flies). (e) Odor preference persistence over 24 hours for flies given a choice between 3-octanol 
and 4-methylcyclohexanol (n=49 flies).
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Supplementary Figure 2: Average glomerulus-odor time-dependent responses.  Time-dependent responses of each glomerulus identified in our 
study to the 13 odors in our odor panel. Data represents the average across flies (ORN, peach curves, n=65 flies; PN, plum curves, n=122 flies). 
Shaded error bars represent S.E.M.
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Supplementary Figure 3: Individual glomerulus-odor responses  (a) Idiosyncratic odor coding measured in ORNs (left, n=65 flies) and PNs 
(right, n=122 flies). Each column represents the response (max Δf/f attained over the odor trial) of a single fly averaged over up to 4 odor deliveries. 
Each row represents a glomerulus-odor response pair. Missing data are indicated in gray. 
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Supplementary Figure 4: Glomerulus responses and identification  (a) Glomerulus odor responses measured in PNs versus those measured in 
ORNs. Points correspond to the odorants listed in Figure 1g. (b) Cross-odor trial correlation matrix between glomerular odor responses in ORNs and 
PNs. (c) Peak calcium responses for each glomerulus-odor pair measured in this study plotted against those recorded in the DoOR dataset37. (d) 
Peak calcium responses for each individual glomerulus plotted against those recorded in the DoOR dataset.
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Supplementary Figure 5: Idiosyncrasy of ORN and PN responses (a) Logistic regression classifier accuracy of decoding individual identity from 
individual odor panel peak responses. PCA was performed on population responses and the specified fraction of variance (x-axis) was retained. 
Individual identity can be better decoded from PN responses than ORN responses in all cases. (b) Individual trial-to-trial glomerulus-odor responses 
embedded in PC 1-2 space. Responses for the same flies as Figure 1k-l are shown. Each linked color represents one fly. Trial 1 and trial 2 responses 
are shown for ORN left lobe (upper left), ORN right lobe (upper right), PN left lobe (lower left), and PN right lobe (lower right). (c) Distance in the 
full glomerulus-odor response space between recordings within a lobe (trial-to-trial), across lobes (within fly), and across flies for ORNs and PNs. 
Points represent the median value, boxes represent the interquartile range, and whiskers the range of the data.
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Supplementary Figure 6: Calcium response correlation matrices. Correlation between calcium response dimensions across flies measured in 
ORNs (top) and PNs (bottom). Glomerulus-odor responses are correlated at the level of glomeruli in both cell types. Inter-glomerulus correlations 
are more prominent in ORNs than PNs, consistent with known AL transformations that result in decorrelated PN responses18,75.
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Supplementary Figure 7: Calcium imaging principal component loadings  (a-b) First 10 principal component loadings measured from calcium 
responses in ORNs (a, n=65 flies) and PNs (b, n=122 flies). Loadings are grouped by glomerulus, with each loading within a glomerulus 
representing the response of that glomerulus to one odor in the odor panel. Odors are the same as those listed in Figure 1g. (c-d) The same 10 
principal component loadings as those shown in panels (a-b) grouped by odor rather than glomerulus. Glomeruli within each odor block are given in 
the order of panels (a) and (b).
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Supplementary Figure 8: Estimating the biological signal explained by Ca-behavior models  (a) Schematic of modeling approach to estimate 
the fraction of biological signal variance (R32, green), as opposed to noise variance, explained by calcium response-behavior models. (b) Estimated 
fraction of behavioral variance explained (R32, green) by calcium response-behavior models (colormap) as a function of the behavioral persistence 
(R12, y-axis, pink) and neural-behavior variance explained (R22, x-axis, blue). R12 can be estimated from the repeatability of behavior measures over 
the timescale of the experiment (Fig S1b-e) and R22 is the calcium response-behavior model performance (e.g., Fig1l-n, p-r, Fig3c,f,i).
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Supplementary Figure 9: Loci of individuality across the olfactory periphery (a) Table summarizing circuit element predictors, the strength of 
their nominal correlation with odor-vs-air behavior scores, and the estimated fraction of biological signal captured by these models, as determined 
by the analysis presented in Fig S8. Schematic at right places these values in the context of the olfactory circuit. (b) As in (a) but for odor-vs-odor 
experiments.

�

Supplementary Figure 10: Time-dependent preference- and odor-decoding (a) R2 of odor-vs-air preference predicted by PC 1 of PN activity as 
a function of time across trials (n=53 flies). (b) R2 of odor-vs-air preference predicted by PC 1 of ORN activity as a function of time across trials 
(n=30 flies). (c) R2 of odor-vs-odor preference predicted by PC 2 of PN activity (solid plum, n=69 flies) or PC 1 of ORN activity (dashed peach, 
n=35 flies) as a function of time across trials. (d) Logistic regression classifier accuracy of decoding odor identity from 5 glomerular responses as a 
function of time. Dashed curves indicate performance on shuffled data.
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Supplementary Figure 11: ORN>Brp-Short characterization and model predictions  (a-c) Right versus left glomerulus properties measured 
from z-stacks of stained Orco>Brp-Short samples. (a) Volume, (b) total Brp-Short fluorescence, (c) Brp-Short fluorescence density. (d-f) Same data 
as panels (a-c) represented in violin plots (kernel density estimated). (g) Principal component loadings of Brp-Short density calculated using only 
training data (n=22 flies). (h) Principal component loadings of Brp-Short density calculated using all data (n=53 flies).
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Supplementary Figure 12: Calcium and Brp-Short predictor variation (a) Histogram of average PN Δf/f across all coding dimensions in flies in 
which OCT-AIR preference was measured. (b) Measured OCT-AIR preference versus average PN Δf/f (n=53 flies). (c) Histogram of average ORN 
Δf/f across all coding dimensions in flies in which OCT-AIR preference was measured. (d) Measured OCT-AIR preference versus average ORN Δf/f 
(n=30 flies). (e) Histogram of % Δf/f difference between DM2 and DC2 PN responses in flies in which OCT-MCH preference was measured. (f) 
Measured OCT-MCH preference versus % Δf/f difference between DM2 and DC2 PN responses df/f (n=69 flies). (g) Histogram of % Brp-Short 
density difference between DM2 and DC2 ORNs in flies in which OCT-MCH preference was measured. (h) Measured OCT-MCH preference versus 
% Brp-Short density difference between DM2 and DC2 ORNs (n=53 flies).
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Supplementary Figure 13: AL model raster plot  (a) Action potential raster plot of ORNs in the baseline simulated AL. Rows are individual 
ORNs, black ticks indicate action potentials. Random shades of orange at left indicate blocks of ORN rows projecting to the same glomerulus. (b) 
As in (a) for the remaining neurons in the model. Shades of green indicate excitatory vs inhibitory LNs and shades of purple indicate PNs with 
dendrites in the same glomeruli.

�

!26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.24.474127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/


Churgin & Lavrentovich et al., 2021 – preprint version – www.biorxiv.org 

Supplementary Figure 14: AL model baseline outputs compared to experimental data (a) Distributions of model neuron firing rates by cell 
type across odors (transparent black points are individual neuron-odor combinations). Black lozenge symbols indicate the mean firing rate of the 
points to the right. Yellow stars indicate the comparable experimental values reported in15,21,45,68. (b) Scatter plots of average PN firing rate vs ORN 
firing rate during odor stimuli in the model vs experimental values18. Points are odors, colors are glomeruli. (c) Histograms of ON odor minus OFF 
odor glomerulus-average PN and ORN firing rates in the model vs experimental values18, showing flatter distributions in PNs. (d) Odor 
representations in the first 2 PCs of glomerulus-average ORN responses and PN responses in the model and experimental results18. Points are odors. 
Pairwise distances between PN representations are more uniform than in ORNs in both the model and experimental data. Panels (b)-(d) use 
glomerulus-average PN and ORN firing rates from six of the seven glomeruli in18, as VM2 is significantly truncated in the hemibrain34. Literature 
features in panels (b)-(d) were extracted from18 using WebPlotDigitizer76.
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Supplementary Figure 15: Synapse counts vs glomerular volume in the hemibrain and AL model (a) Left) Scatter plot of total PN input 
synapses within a glomerulus vs that glomerulus’ volume from the hemibrain data set. Solid line represents the maximum likelihood-fit mean 
synapse count vs glomerular volume, and dashed lines the fit +/-1 standard deviation. Middle) As (left) but for a single sample from the 
parameterized distribution of PN input synapses vs glomerular volume. Right) As in previous for a single bootstrap resample of PNs. Color-
highlighted glomeruli illustrate that when PNs within a glomerulus have highly asymmetrical synapse counts, bootstrapping them alone can result in 
apparent synapse densities that lie outside the empirical distribution (left). (b) As in (a) but on log-log axes, showing the linear relationship between 
synapse density and glomerular volume after this transformation, and bootstrapped densities falling outside this distribution at right.
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Supplementary Figure 16: PN response PCA loadings under various sources of circuit idiosyncrasy (a) Loadings of the principal components 
of PN glomerulus-odor responses as simulated across AL models where Gaussian noise with a standard deviation equal to 0, 20, 50, and 100% of 
each synapse weight was added to each synaptic weight in the hemibrain data set. (b) As in (a) but with circuit variation coming from bootstrapping 
of each major AL cell type or all three simultaneously. (c) As in other panels, but with circuit variation coming from bootstrap resampling of 
different cell-type combinations in addition to PN input synapse density resampling as illustrated in Figure S15.
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Supplementary Figure 17: Classifiability of simulated idiosyncratic behavior under different sources of circuit idiosyncrasy. Simulated PN 
odor-glomerulus firing rates projected into their first 3 principal components. Individual points represent single runs of resampled AL models, under 
four different sources of idiosyncratic variation. PN responses in all odor-glomerulus dimensions were used to calculate simulated behavior scores 
for each resampled AL, by applying the PN calcium-odor-vs-odor linear model (Fig 2g). Magenta points represent flies with simulated preference 
for MCH in the top 50%, and green OCT preference. % Misclassification refers to 100% – the accuracy of a linear classifier trained on MCH-vs-
OCT preference in the space of the first three PCs. This measures how much of the variance along the PN calcium-odor-vs-odor linear model lies 
outside the first three PCs of simulated PN variation.
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Movie 1: Example recording with automated tracking of an odor-vs-air behavioral assay. The recent positions of each fly (green line) are 
shown in different colors. Red bar indicates when the odor stream is turned on.  
http://lab.debivort.org/odor-loci-of-individuality/movies/OLOI-Movie-1-odor-vs-air-behavior.mp4

�

Movie 2: Example recording with automated tracking of an odor-vs-odor behavioral assay. The recent positions of each fly (green line) are 
shown in different colors. Magenta and green bars at right indicate when MCH and OCT are respectively flowing into the top and bottom halves of 
each arena. http://lab.debivort.org/odor-loci-of-individuality/movies/OLOI-Movie-2-odor-vs-odor-behavior.mp4

�

!31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.24.474127doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474127
http://creativecommons.org/licenses/by/4.0/


Churgin & Lavrentovich et al., 2021 – preprint version – www.biorxiv.org 

 

 

 
Movie 3: Confocal image stack of expanded DC2>Brp-Short. Magenta is nc82 stain, Green is Or13a>Brp-Short. Frames are z-slices spaced at 
0.54 µm. Image height corresponds to a post-expansion field of view of 107 x 90 µm (a ~2.5 x linear expansion factor). http://lab.debivort.org/odor-
loci-of-individuality/movies/OLOI-Movie-3-Brp-expansion-stack.avi
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Movie 4: Simulated AL connectivity matrices under glomerular density resampling. Each frame corresponds to the hemibrain connectome 
synaptic weights, rescaled according to a sample from the relationship between synapse count and volume parameterized in Fig S15.  
http://lab.debivort.org/odor-loci-of-individuality/movies/OLOI-Movie-4-synapse-density-resampling.gif
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Movie 5: Simulated AL connectivity matrices under ORN bootstrapping. Each frame corresponds to the hemibrain connectome synaptic 
weights, but with the population of ORNs projecting to each glomerulus resampled with replacement. See Modeling Methods. http://
lab.debivort.org/odor-loci-of-individuality/movies/OLOI-Movie-5-ORN-bootstrapping.gif
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Movie 6: Simulated AL connectivity matrices under LN bootstrapping. Each frame corresponds to the hemibrain connectome synaptic weights, 
but with the population of LNs resampled with replacement. See Modeling Methods.  
http://lab.debivort.org/odor-loci-of-individuality/movies/OLOI-Movie-6-LN-bootstrapping.gif
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Behavior measured Neural Predictor Figure 
Panel n β0 β1 R2 p-value

OCT vs. AIR PN PC 1 (Fig 2a) 1l 18 -0.258 -0.079 0.161 0.099
OCT vs. AIR PN Average all dimensions 2c 53 -0.051 -0.379 0.098 0.022

OCT vs. AIR ORN PC 1 (Fig 2d) 1n 30 -0.286 -0.053 0.230 0.007

OCT vs. AIR ORN Average all dimensions 2f 30 -0.032 -0.709 0.246 0.005
OCT vs. MCH PN PC 2 (Fig 2g) 1p 47 -0.058 -0.081 0.154 0.006

OCT vs. MCH PN DM2 - DC2 (% difference) 2i 69 -0.032 -0.004 0.120 0.004
OCT vs. MCH ORN PC 1 1r 35 -0.138 -0.027 -0.031 0.315

Table 1: Calcium response-behavior model statistics

Behavior measured Neural Predictor Figure Panel n β0 β1 R2 p-value

OCT vs. MCH ORN PC 2 (train data only) (Fig 3e) 3f 22 -0.087 0.017 0.218 0.028
OCT vs. MCH ORN PC 2 (all data) (Extended Figure 9h) Extended Figure 9j 53 -0.019 0.012 0.088 0.031

OCT vs. MCH ORN DM2 - DC2 3h 53 -0.051 -0.007 0.053 0.096

OCT vs. MCH ORN DC2 Extended Figure 9k 53 -0.202 0.004 0.030 0.213
OCT vs. MCH ORN DM2 Extended Figure 9l 53 -0.014 0 0 0.978

Table 2: Brp-Short-behavior model statistics 

Parameter ORNs LNs PNs

Membrane resting potential -70 mV 38 -50 mV 39 -55 mV 40

Action potential threshold -50 mV 38 -40 mV 39 -40 mV 40

Action potential minimum -70 mV 77 -60 mV 39 -55 mV 40

Action potential maximum 0 mV 38 0 mV 39 -30 mV 78

Action potential duration 2 ms 40 4 ms 39 2 ms 40

Membrane capacitance 73 pF (assumed = PNs) 64 pF 79 73 pF 79

Membrane resistance 1.8 GOhm 38 1 GOhm 39 0.3 GOhm 40

Table 3: Typical electrophysiology features of AL cell types, used as model parameters 
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