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Individuals vary in their innate behaviours, even when they have the same
genome and have been reared in the same environment. The extent of indi-
viduality in plastic behaviours, like learning, is less well characterized. Also
unknown is the extent to which intragenotypic differences in learning gener-
alize: if an individual performs well in one assay, will it perform well in
other assays? We investigated this using the fruit fly Drosophila melanogaster,
an organism long-used to study the mechanistic basis of learning and
memory. We found that isogenic flies, reared in identical laboratory con-
ditions, and subject to classical conditioning that associated odorants with
electric shock, exhibit clear individuality in their learning responses. Flies
that performed well when an odour was paired with shock tended to per-
form well when the odour was paired with bitter taste or when other
odours were paired with shock. Thus, individuality in learning performance
appears to be prominent in isogenic animals reared identically, and individ-
ual differences in learning performance generalize across some aversive
sensory modalities. Establishing these results in flies opens up the possibility
of studying the genetic and neural circuit basis of individual differences in
learning in a highly suitable model organism.
1. Introduction
Genetically identical Drosophila melanogaster, raised in identical environments,
display individuality in numerous innate behaviours [1–8], including light pre-
ference [2], left–right turning [3], temperature preference [4], postural
behaviours identified by unsupervised analyses [5] and object-tracking [6].
Work to date has focused exclusively on innate or spontaneous behaviours.
But plastic behaviours, such as learning, also have the potential to exhibit indi-
viduality, as each animal may have an idiosyncratic propensity to respond to
training stimuli [9]. Individual variation in learning within insect populations
has been described as early as 1907, by Charles Turner [10,11] in ants and hon-
eybees. To our knowledge, individual variation in learning among genetically
identical flies has not been characterized.

Here, we present evidence that genetically identical flies exhibit individuality
in their ability to learn odour associations. Drawing inspiration from a classical
Pavlovian conditioning assay [12–14], animals are exposed to two stimuli simul-
taneously, a so-called ‘conditioned stimulus’ (CS+), to which their behavioural
response will change across the conditioning, and a so-called ‘unconditioned
stimulus’ (US), to which their response will remain invariant [15]. In addition,
flies were exposed to a second odour, the ‘CS−’, without a US. The learned
response to this training is likely to be avoidance of the CS+, as our US is aversive.
Our experimental instrument, inspired by [9], allowed (i) measurement of
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individual learning performance, (ii) the automated selection
of different CS odorants and (3) the use of electric shock or
optogenetic activation [16] of negative valence neural circuit
elements as US [17]. With this instrument, we can test a fly’s
generalized learning performance through reversal learning
trials (i.e. swapping the CS+ and CS− odours). This paradigm
represents a more cognitively demanding form of learning
compared to classical conditioning because it requires modifi-
cation of the previous association [18–23]. We also examined
the generality of learning differences by training the same
flies across two aversive USmodalities: shock and optogenetic
stimulation of bitter taste receptor neurons. We found positive
correlations in learning performance when varying either the
CS odorant or US. Thus, individual learning performance in
flies appears to generalize across some stimuli.
 Lett.18:20210424
2. Material and methods
All flies were grown on cornmeal/dextrose food in incubators
(25°C, 40% relative humidity, 12 : 12 h light : dark cycle). Behaviour
experimentswere conductedon females 7–8dayspost eclosion. For
optogenetic experiments,Gr66a-LexA and LexAop-CsChrimson flies
were crossed to produce experimental F1 s. Gr66a-LexAp65 was
constructed using Sequence and Ligation Independent Cloning
[24]. The Gr66a promoter fragment was the same 1798 bp segment
used previously [25] and extended from the translation start site of
the Gr66a open reading frame to the next upstream gene. This was
joined to the start codon of the LexA::p65 transcriptional activator
from pBPLexA::p65Uw [26] in a vector backbone derived from
pUASTattB [27] by removing theUAS sites. The constructwas inte-
grated into the attP18 site. In experimental groups receiving the
optogenetic US, 10 μl of 100 mM all-trans-retinal was applied to
the surface of fly food, and flies were housed on this food for at
least 48 h. Flies were aspirated directly into the behavioural
arenas without anaesthetization.

The assay instrument consisted of 15 linear tunnels with
inlets at either end and a vent at the centre (figure 1a,b). In
each trial, a single fly was placed into each tunnel and allowed
to walk freely. Laminar airflow carrying odour stimuli enters
the tunnels from either end and meets at the centre, forming a
sharp boundary. From there, the odorized air is vented to the
room (figure 1b). Odorants were generated by flowing clean air
over liquid odorants in a series of vials, under the control of sole-
noids and mass-flow controllers, as described in [8]. Within the
arena, flies were presented one pair of odours (e.g. methylcyclo-
hexanol [MCH] versus octanol [OCT] or 1-pentanol versus 2-
heptanone [HEPT]). Shock US was delivered via laser-cut grids
of indium tin oxide installed on each tunnel floor. Eighty
volt direct current pulses from a Grass SD9 Pulse Stimulator
(20 Hz for 5 s) were delivered at 10-s intervals. For optogenetic
experiments, 626 nm red LEDs were used to activate CsChrim-
son and pulsed at 20 Hz for 3 s with a 5 s interstimulus
interval. See assay timelines in figures 1 and 2. Behaviour was
recorded using a CMOS camera (Point Grey Firefly MV) with a
longpass filter (Kodak Wratten Filter 87C) at 60 Hz. Tracking
was performed using custom MATLAB scripts that used
two-dimensional cross-correlation for tunnel and initial fly
identification, and background subtraction to locate fly centroids.

With this instrument, we implemented three associative con-
ditioning assays. Flies were subject to exactly one of these
assays, all of which were conducted in a temperature-controlled
environmental chamber in darkness at 25°C and 40% relative
humidity. The start of each assay consisted of a 2 min pre-training
period in which the CS+ and CS− odorants were present in the
tunnels, allowing us to measure flies’ untrained odour preference,
which was variable as expected [8]. In the ‘reversal assay’, flies
were first subject to classical pairing of odour with shock and
then a reversal pairing in which the CS+ and CS− odorants
were swapped. Learned responses were assessed after each
pairing in a choice between the CS+ and CS− odours without
shock (i.e. a single extinction trial). The ‘odour generalization
assay’ took the form of two reversal assays (using four odorants
in total) conducted on successive days, between which the indi-
vidual identity of flies in this assay was maintained by housing
flies in modified 96-well plates (flyPlates, FlySorter, LLC; [28]).
The ‘US generalization assay’ took the form of the reversal assay
but replaced electric shock with optogenetic bitter US in the initial
classical pairing. See schematic of assay phases in figures 1 and 2.

Individual learning responses were measured by the normal-
ized magnitude of change in occupancy towards the CS− from
pre-training to post-training. This metric has a value of 0 if flies
exhibit no learning, 1 if they spend all their time post-training
in the CS− compartment and −1 if they spend all their time
post-training in the CS+ compartment. Normalizing by the pre-
training preference response accounts for individual variation
in baseline preference [8].

learning response ¼
post� pre
1� pre

if, post� pre . 0

post� pre
pre

if, post� pre � 0

8>><
>>:

The correlation of learning responses across trials was calcu-
lated as the Pearson correlation coefficient, and all p-values are
nominal. Data analysis was performed using custom MATLAB
scripts. Raw data and analysis scripts [29] are available at
http://lab.debivort.org/individuality-in-learning and https://
zenodo.org/record/4458572.
3. Results
As expected, both training sessions in the reversal assay
resulted in significant changes in mean OCT preference
across flies (figure 1d ). This mean change was not observed
in control experiments (pairing the US with both CS+ and
CS−, backward conditioning or presenting the CS alone; elec-
tronic supplementary material, figure S1). However, we also
observed individual flies that appeared to not learn on a
given trial, with similar preference for OCT pre- and post-
training or increased OCT preference even when OCT was
the CS+. These observations could reflect statistical noise,
rather than individual variation in learning response. To
test this, we examined the correlation between the learning
response during the classical and reversal phases of the rever-
sal assay. This correlation was positive and significant across
individual flies (r = 0.31, p = 0.02; figure 1e), suggesting that
individual animals have idiosyncratic learning responses
that generalize across the identity of the CS+ odorant. (A
few individuals exhibited the same odour preference after
both classical and reversal phases, appearing to respond to
one association but not the other, a result that could also be
explained by these flies having a strong naive preferences
that do not change across the assay.) Consistent individual
differences in learning response were not correlated with a
fly’s activity (distance travelled) during the assay or initial
odour preference (electronic supplementary material, figure
S2), and we found no evidence that variation in learning
could be explained by variation in prediction errors
(electronic supplementary material, figure S1D).

The observation that individual performance following
classical and reversal conditioning is correlated suggests that
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learning ability may generalize across sensory channels in
flies. To explore this possibility, we implemented the odour
generalization assay in which flies were subject to classical
and reversal conditioning with 1-pentanol and 2-heptanone
as CS odours, stored for 24 h and subject to classical and
reversal conditioning with MCH and OCT (figure 2a). In
addition, we substituted optogenetic stimulation of bitter
taste neurons as the US instead of electric shock (electronic



US generalization assay
re

ve
rs

al
 c

on
di

tio
ni

ng
 le

ar
ni

ng
 r

es
po

ns
e

(U
S:

 s
ho

ck
 )

O
C

T
 p

re
fe

re
nc

e

LED
685 nm

80 V

pre-training post-training classical conditioning learning response
(US: CsChrimson)

MCH

OCT

0

0.2

0.4

0.6

0.8

1.0

pre-training post-training

p = 1.7 × 10–11

p = 3 × 10–17 p = 6 × 10–4 p = 3 × 10–4p = 0.0022

p = 1.1 × 10–7

H
E

PT
 p

re
fe

re
nc

e

  p
re

-
tr

ai
ni

ng

  p
os

t-
tr

ai
ni

ng

0

0.2

0.4

0.6

0.8

1.0

  p
re

-
tr

ai
ni

ng

  p
os

t-
tr

ai
ni

ng

O
C

T
 p

re
fe

re
nc

e

  p
re

-
tr

ai
ni

ng

  p
os

t-
tr

ai
ni

ng

0

0.2

0.4

0.6

0.8

  p
re

-
tr

ai
ni

ng

  p
os

t-
tr

ai
ni

ng

–1.0 –0.5 0 0.5 1.0
–1.0

–0.5

0

0.5

1.0
r = 0.59
p = 8 × 10–6

5 min
0 1000200 400 600 800

time (s)
0 1000200 400 600 800

time (s)

r = 0.38

p = 8.4 × 10–4

r = 0.41

p = 5.5 × 10–4

r = 0.59

p = 1.1 × 10–7

r = 0.06

p = 0.61

r = 0.42

p = 4.2 × 10–4

r = 0.36

p = 2.8 × 10–3

PENT+

PENT+ HEPT+ MCH+ OCT+

HEPT+ MCH+ OCT+

PENT+

odour generalization assay

HEPT+ MCH+ OCT+

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

PE
N

T
+

H
E

PT
+

M
C

H
+

O
C

T
+

da
y 

1

da
y 

2

LED
685 nm

MCH

OCT

LED
685 nm

PENT

HEPT

1

0

0 200 400 600 800 1000 1200
time (s)

0 200 400 600 800 1000 1200
time (s)

0 200 400 600 800 1000 1200

time (s)

0 200 400 600 800 1000 1200
time (s)

120 120 120 120 120 120 120 120 120 120 120 120120 120 120 120 120 120 120 120 120 120 120 120

5 min5 min ~24 hr

(a)

(b) (c)

(d)

(e)

(f)

Figure 2. Individual learning across odours and US modalities. (a) Schematic of the odour generalization assay. Grey numbers indicate the length in seconds of each
stimulus phase. (b) Odorant preference of flies before and after training for all the learning trials of (a). Odorant labels indicate the CS+ in each trial. Points are
individual flies. Thick black line represents the mean. p-Values reflect paired t-tests. (c) Correlation matrix for individual fly learning responses for all pairs of learning
trials in (a) and (b). x- and y-Axes of scatter subplots correspond respectively to the learning responses of the CS+ condition indicated by the column and row of the
matrix. Points are individual flies. Line is the best linear fit, and shaded region is the 95% CI of the best-fit line. (d ) Schematic of the US generalization assay.
Stimulus phases have the same durations as in figure 1c. (e) Octanol preference of flies before and after training with shock as the US (left) or optogenetic activation
of bitter taste neurons (right). Points are individual flies. Thick black line represents the mean. p-values reflect paired t-tests. ( f ) Scatterplot of learning responses to
the shock US trial versus the bitter taste US trial (r = 0.45; p = 0.01; n = 47). Points are individual flies. Line is the best linear fit, and shaded region is the 95% CI
of the best-fit line, suggests learning responses to HEPT may not be idiosyncratic.

4

royalsocietypublishing.org/journal/rsbl
Biol.Lett.18:20210424

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 M

ar
ch

 2
02

2 
supplementary material, figure S3). This was done by expres-
sing CsChrimson [16] in bitter taste neurons using a Gr66a-
LexA driver and exposing flies to 626 nm LED illumination
in place of the electric shocks. Replacing shock with bitter
taste also let us assess whether individuality and correlation
in learned responses to classical and reversal conditioning is
US specific. In addition, by looking at learning performance
after 24 h, we could assess whether individual variation in
learning performance is stable over time. As we saw with
shock–odour conditioning, flies subject to optogenetic
bitter–odour conditioning exhibited mean learned avoidance
of the CS+ odour (figure 2b; electronic supplementary
material, figure S4). We observed significant correlations in
individual learning responses among almost all four con-
ditioning variants in this experiment (0.36 < r < 0.59; 1.1 ×
10−7 < p < 2.8 × 10−3; figure 2c). Two exceptions were MCH+
and 2-heptanone+ (r = 0.06; p = 0.61) and 2-heptanone+ and
1-pentanol+ in the odour generalization assay replicate (r =
0.16; p = 0.17), for which we have no confident explanation.
These results suggest that individuality in learning
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performance is largely odour CS- and US-independent and
stable over at least 24 h.

A possible explanation of these results is individual vari-
ation in US encoding. Flies that receive stronger shocks show
stronger learning responses [23], so spontaneous variation in
the perception of a US (either shock or bitter taste) may affect
the learning responses for many CS. We tested this in the US
generalization assay by performing classical and reversal
conditioning with OCT and MCH but switching between
US within the same animals (figure 2d ). Both classical and
reversal sessions showed significant mean differences in
odour preference (figure 2e). Comparing across these two
aversive US modalities, we observed a positive correlation
in learning responses (r = 0.59; p = 8 × 10−6; figure 2d ). This
suggests that in addition to generalizing across CS odorant
identity, individual differences in fly learning performance
may generalize across aversive US modalities.
:20210424
4. Discussion
Using a training instrument that (i) has versatile control over
CS and US and (ii) tracks individual learned behaviour, we
observed that flies are idiosyncratic in their learning perform-
ance in classical conditioning paradigms. Flies that perform
well for one CS/US pair tend to perform well for other CS
and US, suggesting that individual differences in learning
performance generalize across CS odorants and aversive US
modalities. We attempted learning experiments in other mod-
alities (colour as a CS and optogenetic activation of sweet-
sensitive neurons as a US) but did not see learning responses,
likely a technical failure of our assay. Bees were recently
shown to be similarly idiosyncratic, but without generaliz-
ation between visual and olfactory CS modalities [30]. Our
results, in a genetic model organism (see also [31]), provide
a basis to probe the mechanistic basis of individuality in
learning. Specifically, our results hint that the biological
basis for such idiosyncrasy in olfactory learning originates
more centrally in the brain than sensory circuit elements
dedicated to encoding either CS or US. Stochastic physiologi-
cal variation [1] in neurons mediating aversive US signals in
general could account for individual variation that general-
izes across aversive US. Such sites would be ‘loci of
individuality’ [32] for learning performance. Mushroom
body dopaminergic neurons [33–37], particularly those in
the protocerebral posterior lateral cluster [9], have been
shown to mediate multiple aversive US signals including
shock [38,39], bitter taste [40,41] and temperature [42]. Mush-
room body output [43–46] and intrinsic neurons [47] are also
promising candidates. But valence might also be encoded
broadly across multiple populations of neurons [33,48,49],
including elements in the sensory periphery [48,49]. Circuit
elements known to exhibit high developmental stochasticity
[8,50,51] may also be loci of individuality. Our results suggest
that flies are a promising model for characterizing the
circuit basis of individual variation in generalized learning
ability, which is evident even among genetically identical
individuals reared in the same environment.
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