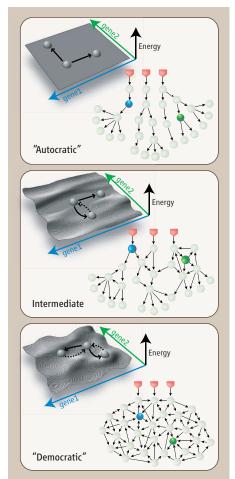
PERSPECTIVES

Attractors and Democratic Dynamics


Cellular transcription networks are conceptualized as distributed control systems that regulate gene expression.

Yaneer Bar-Yam,¹ Dion Harmon,¹ Benjamin de Bivort^{1,2}

The functional identity of a cell is largely determined by the regulated expression (transcription) of thousands of genes, so how it maintains a particular transcriptional state is of critical importance. Developmental biologists study how embryonic cells navigate a series of intermediate transcriptional states before settling into a final adult state; microbiologists identify the mechanisms by which transcription is altered by environmental perturbation; and oncologists seek to identify how cells switch from benign to cancerous. Consider two concepts of transcriptional regulation. In a "molecular autocracy," master genes respond to environmental or developmental stimuli by regulating thousands of genes, either directly or through other transcription factors. In a "molecular democracy," all genes exert a regulatory influence on all other genes, and phenotypic change (altered cell behavior) is brought about through the concerted action of thousands of genes. These scenarios are extreme and cells operate under a condition that is somewhere intermediate (see the figure) (1). But the choice of concept affects how regulation is studied.

The autocratic framework can be directly investigated by studies of individual molecular mechanisms and has been the starting point for discussions of biological processes. But a broader understanding of regulatory mechanisms is needed that incorporates essential features of both extreme views. The democratic framework relies on mutual regulation, which tends toward a self-consistent gene expression state that is stable in the face of fluctuations. In other words, this view has its roots in the conceptual understanding of stability and homeostasis of cell types (2, 3). The democratic view has only recently gained empirical support, perhaps because its characterization involves studies of genome-wide dynamical processes.

A dynamic system with extensive mutual regulation tends to transition toward particular states, known as attractors, over time (often envisioned as valleys in a landscape). Background "noise" causes deviation in one cell over time, and among cells at one instant, but they recover. That there is an attractor state in

Transcription regulatory architecture. In autocratic regulatory networks (top), individual master regulator genes (pointed squares) are stimulated by external signals and control many other genes (circles). As shown by the energy landscape, the transcriptional states (spheres) may have no preferences (black arrows represent changes in expression of genes 1 and 2). In democratic networks (bottom), all genes act as mutual regulators. A few specific gene expression patterns become stable, shown as basins of attraction (cell types) in the landscape. Once a cell reaches one of these states, changing the expression of one gene is unlikely to switch the cell type (black arrows). Intermediate networks (middle) have mutual regulation, but certain genes (blue circle) are major controllers.

the space of transcriptional states (4, 5) supports the prediction of a democratic system. Chang et al. (6) recently identified transcriptional variability in clonally related mouse hematopoietic precursor cells, and separated the cells into several groups with expression differences in thousands (but still a minority) of genes. Over days, these cell group lineages converged to the same transcriptional state distribution. That is, the cell groups became indistinguishable, having the same average gene expression, as well as noise-induced variation, among individual cells. Such convergence is the signature of an attractor, in which many individual differences in transcription are insufficient to change the overall cell phenotype (a "controlling" majority of transcribed genes does not change) and mutual interactions among the genes cause trends toward specific mutually reinforcing states.

The attractor paradigm has practical implications: If distinct cell types (such as a precursor cell and a fully differentiated cell) correspond to distinct attractors, then there are multiple parallel ways to shift the transcriptional state from one attractor to another. Such families of trajectories are expected to engage multiple interconnected signaling pathways whose collective behavior (and outcome) is simple. In a limited way, this has been observed in the differentiation of immune cells (4) and stem cells (7). If the attractor picture is generically valid, it should be possible to create cocktails of large numbers of gene products that switch cells between different types. Any sufficiently large subset of gene products should be sufficient to cause the switch. Consider the number of gene expression levels that are needed to robustly characterize distinct cell types. An analysis (see fig. S1) of the transcriptional profiles of 79 human tissues and tumor cell types (8) reveals that about 200 highly variable gene expression values are sufficient to capture the relationships among the tissues and tumor cells, whereas fewer than 80 are not. By this measure, cocktails with a couple of hundred gene products chosen to mimic the differences between two cell types should generically cause transitions between them.

Still, paradoxically, Chang *et al.* (6) segregated cells according to the expression of a single gene, and showed that specific genes can

¹New England Complex Systems Institute, 24 Mt. Auburn Street, Cambridge, MA 02138, USA. ²Roland Institute at Harvard University, 100 Edwin Land Boulevard, Cambridge, MA 02139, USA. E-mail: yaneer@necsi.edu

control the overall cell state (and cell fate). This has also been observed in developing cells that are highly sensitive to external signaling molecules (9), but attain a highly stable differentiated state (4). More generally, cells are robust to noise and small perturbations in transcription (10), but sensitive to small changes in specific external (11) and internal (12) cues. Indeed, whereas regulatory networks have been characterized as robust to random failure and vulnerable to targeted attack (13), from a regulatory perspective, generic stability with sensitivity to specific perturbations is a positive property rather than a negative one (14). What is missing is a framework in which individual genes and collective states can be considered together.

What framework should be used to study collective state control? The difficulty is that for individual gene effects, individual tran-

GEOCHEMISTRY

Making a Crust

Peter J. Michael¹ and Michael J. Cheadle²

The discovery of seafloor spreading in the 1960s enabled the formulation of the theory of plate tectonics. Modern geology textbook wisdom provides an image of magnetic stripes being made neatly on the seafloor when new oceanic crust is produced at a very narrow mid-ocean ridge axis, and subsequently moves outward. But how is the 6-kmthick crust actually produced at the ridge axis? On page 1048 of this issue, Lissenberg *et al.* (1) address this and other questions of ocean crust formation by applying state-of-the-art dating techniques to date samples from the mid-Altantic ridge. They report that the tiny zircon crystals that are relatively abundant in the

oceanic crust make it easy to date the crust, thereby providing a clearer picture of the formation processes involved.

Marine geologists have a good understanding of the different rock layers that are present in ocean crust. A kilometerthick basalt layer at the seafloor is produced by magma that is fed through sheet-like intrusions called dikes. The deepest

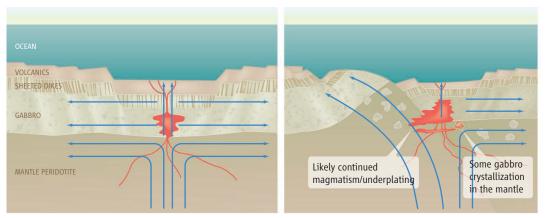
¹Department of Geosciences, University of Tulsa, Tulsa, OK 74104, USA. ²Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA. E-mail: pjm@utulsa.edu; cheadle@ uwyo.edu

scription levels are important. For attractors, collective dynamics of the transcriptome within a cell type, rather than specific gene expression signatures, characterize cell behavior (not just cell type differences). What is needed are control coefficients that measure change in collective states relative to archetypes (see supporting text), and in relation to individual gene transcription level changes. Relating the variation of small sets of gene expression values to deviation or conformity to archetypes can provide a framework to study the interplay of attractors and master regulators. Such observations, best taken from unaveraged data, should identify the dispersal and convergence of cells near an attractor, and the mechanisms of homeostatic control. Using multiple archetypes also should enable the study of cell fate trajectories.

References

- 1. E. H. Davidson *et al.*, *Science* **295**, 1669 (2002).
- C. H. Waddington, *Principles of Embryology* (Allen and Unwin, London, 1956).
- 3. S. A. Kauffman, J. Theor. Biol. 22, 437 (1969).
- 4. S. Huang et al., Phys. Rev. Lett. 94, 128701 (2005).
- 5. P. Ao et al., Med. Hypotheses 70, 678 (2008).
- 6. H. H. Chang et al., Nature 453, 544 (2008).
- 7. A. G. Bang, M. K. Carpenter, Science 320, 58 (2008).
- 8. A. I. Su et al., Proc. Natl. Acad. Sci. U.S.A. 101, 6062 (2004).
- 9. K. L. Medina et al., Dev. Cell 7, 607 (2004).
- J. A. de Visser *et al.*, *Evolution* **57**, 1959 (2003).
 G. Balazsi *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* **102**, 7841
- 11. G. Dalazsi et ul., PTOC. Null. Acua. SCI. U.S.A. 102, 784 (2005).
- 12. R. Losick, C. Desplan, Science 320, 65 (2008).
- 13. R. Dobrin *et al.*, *BMC Bioinformatics* **5**, 10 (2004).
- Y. Bar-Yam, I. R. Epstein, *Proc. Natl. Acad. Sci. U.S.A.* 101, 4341 (2004).

Supporting Online Material


www.sciencemag.org/cgi/content/full/323/5917/1016/DC1 SOM Text Figs. S1 and S2

10.1126/science.1163225

Dating zircons from the mid-Atlantic ridge provides clues about how the oceanic crust is formed.

4 km of the crust is formed from basaltic magma that crystallizes to form intrusive gabbro rock. Numerous studies have elucidated how long it takes to form the basaltic and dike layers (2). Much less is known about how the gabbroic lower crust accretes, because it is less accessible, buried beneath the basalts and dikes. Does it grow from the top down, or randomly? Is the width of accretion the same as the width of the axial valley (~10 to 12 km)? Or does some of it accrete farther off axis? How deep do gabbros crystallize? Are they confined to the crust, or can they crystallize in the uppermost mantle? How quickly does the lower crust cool and become rigid after it crystallizes?

The best exposures of gabbroic crust are found at slow-spreading ridges, where faulting accounts for some of the plate spreading. Earlier work (3-5) used an ion microprobe technique to date zircons and concentrated on oceanic core complexes that expose large sections of gabbroic crust by detachment faulting (6). Although the zircon crystallization ages were consistent with the magnetic spreading ages, about 10% of their analyses showed anomalous old ages. These results suggested that some gabbro crystallization had occurred at depth in the upwelling mantle before being transported to shallower levels in the crust.

Crustal formation. (Left) Traditional model for construction of oceanic crust where there is no detachment faulting, similar to where Verna lithospheric section may have been produced as suggested by (1). (Right) Model for more complicated ridges, with some gabbro crystallization in the uppermost mantle and detachment faulting exposing crustal sections at core complexes, as advocated by (3).